
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Secure Composition of Robust and Optimising Compilers

MATTHIS KRUSE, CISPA Helmholtz Center for Information Security and Saarland University, Germany

MICHAEL BACKES, CISPA Helmholtz Center for Information Security, Germany

MARCO PATRIGNANI, University of Trento, Italy

To ensure that secure applications do not leak their secrets, they are required to uphold several security

properties such as spatial and temporal memory safety as well as cryptographic constant time. Existing work

shows how to enforce these properties individually, in an architecture-independent way, by using secure

compiler passes that each focus on an individual property. Unfortunately, given two secure compiler passes that

each preserve a possibly different security property, it is unclear what kind of security property is preserved

by the composition of those secure compiler passes. This paper is the first to study what security properties

are preserved across the composition of different secure compiler passes. Starting from a general theory of

property composition for security-relevant properties (such as the aforementioned ones), this paper formalises

a theory of composition of secure compilers. Then, it showcases this theory a secure multi-pass compiler

that preserves the aforementioned security-relevant properties. Crucially, this paper derives the security of

the multi-pass compiler from the composition of the security properties preserved by its individual passes,

which include security-preserving as well as optimisation passes. From an engineering perspective, this is the

desirable approach to building secure compilers.

This paper uses syntax highlighting accessible to both colourblind and black & white readers.

CCS Concepts: • Security and privacy→ Formal security models.

Additional Key Words and Phrases: Memory-safety, Secure Compilation, Privacy

ACM Reference Format:
Matthis Kruse, Michael Backes, and Marco Patrignani. 2024. Secure Composition of Robust and Optimising

Compilers. In . ACM, New York, NY, USA, 28 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Memory Safety (MS) is a security property obtained by composing Spatial Memory Safety (SMS),

which ensures array accesses are all within bounds, and Temporal Memory Safety (TMS), which

ensures pointers are only used when they are valid [Akritidis et al. 2009; Azevedo de Amorim

et al. 2018; Jim et al. 2002; Michael et al. 2023; Nagarakatte et al. 2009, 2010; Necula et al. 2005].

Cryptographic Constant Time (CCT) is a security property that ensures sensitive data is not

leaked via timing side-channels [Kocher 1996]. Together, SMS, TMS and Strict Cryptographic

Constant Time (sCCT), an enforceable overapproximation of CCT, yield Memory Safety and

Strict Cryptographic Constant Time (MS+sCCT), which is the gold standard of security properties

for secure applications. Programs attaining MS+sCCT do not leak sensitive data either through

erroneous memory accesses, nor through timing side-channels. As discussed in Example 1.1, these

security properties can be enforced by compiler passes [Almeida et al. 2017; Bond et al. 2017], to

ensure programmers need not be aware of the architectural details of where their code will run.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

POPL ’24, January 17-19, 2024, London, UK
© 2024 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

1

HTTPS://ORCID.ORG/0000-0003-4062-9666
HTTPS://ORCID.ORG/0000-0003-3411-9678
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

Example 1.1 (strncpy). Consider the C function strncpy that copies a null-terminated string src
into dst up to a length of n. This function is subject to a subtle SMS vulnerability: The bounds

check i < n should happen before the access to memory location x[i]: otherwise the memory

location past the last element will be leaked to an attacker.

void strncpy(size_t n, char *dst , char *src) {

for(size_t i = 0; src[i] != '\0' && i < n; ++i) {

dst[i] = src[i];

}

}

To prevent this vulnerability, one can use a compilation pass that enforces SMS, such as Soft-

bounds [Nagarakatte et al. 2009] or BaggyBounds [Akritidis et al. 2009].

Because of timing attacks, fixing SMS is not enough to make strncpy secure. In fact, the loop

can terminate early, as soon as the string-terminating character ’\0’ is encountered, thus making

program execution time proportional to the length of the array pointed by src. Also in this case

there exist compiler passes that can rewrite such programs into CCT ones [Cauligi et al. 2019].

Alas, code is not run in isolation, so a malicious attacker could supply code that intracts with

strncpy and trigger a violation of either MS or CCT by calling strncpy with an argument for

src that points to uninitialised memory. This would, in turn, triggering a series of reads from

uninitialised memory, which is an immediate MS violation with devastating real-world conse-

quences [Microsoft 2010a,b,c, 2015; VMWare 2023].

Robust compilers [Abate et al. 2019] are a form of secure compilers that preserve security

properties even in the presence of arbitrary attackers interacting with compiled code. Thus, robust

compilers can be used to prevent vulnerabilities resulting from uninitialised memory (as well as

many other ones), e.g., by targeting capability-based languages such as CHERI [Woodruff et al.

2014], Arm Morello [Arm 2022], or MSWasm [Michael et al. 2023], where the compiler relies on

capabilities to check that pointers are always initialised.

Unfortunately, given secure compiler passes that each preserve a possibly different security

property, there is no way to tell what kind of security property will the composition of those secure

compilers preserve. Worse, without a framework for composing secure compiler passes, it is not

possible to enable separation of concerns, e.g., to have a secure compilation pass that ensures MS

that is developed independently of another secure pass for CCT, that is developed independently

of other passes, such as optimisations.

This paper introduces a framework for reasoning about the composition of secure and optimising

compiler passes akin to those of Example 1.1 and it showcases the power of this framework by

instantiating it on a multi-pass compilation chain. To this end, this paper first discusses how to

compose security properties, such as TMS and SMS into MS, and then adding sCCT to the mix

to obtain MS+sCCT. Then, this paper defines compiler composition and formalises that given

two passes that securely preserve two (possibly distinct) properties, their composition securely

preserves the composition of those properties. The paper then defines several secure compiler passes,

where each is either preserving a different security property (TMS, SMS, sCCT) or performing a

security-preserving optimisation, (e.g., applying Constant Folding (CF) or Dead Code Elimination

(DCE)). Finally, this paper shows that composing these secure compiler passes into a multi-pass

compilation chain results in the end-to-end preservation of MS+sCCT. Crucially, this paper derives

the security of the multi-pass compiler from the composition of the security properties preserved by

its individual passes. This result showcases how the framework allows the kind of formal security

reasoning that compiler writers already want (and already do), obtaining precise, compositional

security reasoning while providing minimal (and modular) proof effort.

2

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Secure Composition of Robust and Optimising Compilers POPL ’24, January 17-19, 2024, London, UK

In summary, this paper makes the following contributions:

• This paper formalises security properties (Section 3) that are of interest for real-world

compiler writers, namely TMS, SMS and CCT (as identified by the plethora of work enforcing

such properties individually [Akritidis et al. 2009; Almeida et al. 2017; Bond et al. 2017;

Cauligi et al. 2019; Dhumbumroong and Piromsopa 2020; Jung et al. 2021; Kuepper et al.

2023; Nagarakatte et al. 2009, 2010; Nam et al. 2019; Shankaranarayana et al. 2023; Younan

et al. 2010; Zhou et al. 2023]). Starting from ways to formalise those properties individually,

this paper shows how to compose their formalisation. The resulting security property is

MS+sCCT, i.e., the gold standard of security properties for secure programs [LeMay et al.

2021].

• This paper takes the secure compilation framework of [Abate et al. 2019] and extends it to

reason about the security of all different known forms of compiler composition (Section 4).

For this, this paper studies sequential compiler composition as well as compilers with

multiple input languages or multiple output ones, as used in existing compilation chains.

This paper proves that starting from two compilers that preserve two (possibly distinct)

properties, their composition preserves the intersection of those properties. Finally, this

paper proves that the order of composition of sequential compiler passes is irrelevant for

the resulting security. This is crucial for reordering optimisation passes and thus generating

secure and efficient code.

• This paper presents a case-study showcasing the conjunction of the previous contributions

(Sections 5 and 6). To this end, it presents a compilation chain consisting of several passes

that ultimately preserves MS+sCCT by means of composing the individual, secure passes

concerning TMS, SMS, and sCCT, respectively. Furthermore, the chain includes two optimi-

sation passes: One performs DCE and the other CF. The formalisation of this case study

showcases the power of the presented framework: The divide-and-conquer approach to

software engineering is a viable strategy even for the development of secure compilers.

• The key contributions of this paper are formalised in the Coq proof assistant and the paper

indicates this with .

This paper starts by introducing relevant notions of security properties and secure compilation

(Section 2), and discusses related work (Section 7) before concluding (Section 8).

Open Source & Technical Report. A technical report with the omitted formal details, lemmas

and proofs, as well as the Coq formalisation are available as supplementary material.

2 BACKGROUND: SECURITY PROPERTIES AND SECURE COMPILERS
To introduce the security argument of this paper, this section first presents the concepts of (security)

properties, of their satisfaction, and of their robust satisfaction (i.e., satisfaction in the presence

of an active attacker; Section 2.1). Then, borrowing from existing work [Abate et al. 2021a, 2019],

the section introduces secure compilers as compilers that preserve robust property satisfaction

(Section 2.2).

2.1 Properties and (Robust) Satisfaction
This paper employs the security model where programs are written in a language whose semantics

emits events 𝑎. Events include security-relevant actions (e.g., reading from and writing to memory,

as detailed in Section 3) and the unobservable event 𝜀. As programs execute, their emitted events

are concatenated in traces 𝑎, which serve as the description of the behaviour of a program.
1

1
Throughout the paper, sequences are indicated with an overbar (i.e., 𝑎), empty sequences with [·], and concatenation of

sequences 𝑎1, 𝑎2 as 𝑎1 · 𝑎2. Prepending elements to sequences uses the same notation: 𝑎 · 𝑎.

3

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

Properties 𝜋 are sets of traces of admissible program behaviours, ascribing what said property

considers valid. The set of all properties can be partitioned into different classes (C), i.e., safety,
liveness, and neither safety nor liveness [Clarkson and Schneider 2008]. A class is simply a set of

properties and for the class of safety properties, it is decidable whether a trace satisfies a safety

property with just a finite trace prefix. As an example, consider a trace describing an interaction

with a memory where the deallocation of an address 𝑙 precedes a read at that address in memory:

Dealloc 𝑙 · Read 𝑙 1729 · This program behaviour is insecure with respect to a canonical notion

of (temporal) memory safety dictating no use-after-frees of pointers [Azevedo de Amorim et al.

2018; Nagarakatte et al. 2010], because it reads from a memory location that was freed already. The

previous finite trace prefix is enough to decide that the trace does not satisfy TMS and there is

no way to append events to this prefix which would result in the trace being admissible. In the

following, the execution of a whole program𝑤 that terminates in state 𝑟 according to the language

semantics and produces trace 𝑎 is written as 𝑤
𝑎
=⇒ 𝑟 . With this, property satisfaction is defined

as follows: whole programs 𝑤 satisfy a property 𝜋 iff 𝑤 yields a trace 𝑎 such that 𝑎 satisifies 𝜋

(Definition 2.1).

Definition 2.1 (Property Satisfaction). ⊢ 𝑝 : 𝜋
def
= if𝑤

𝑎
=⇒ 𝑟 , then 𝑎 ∈ 𝜋 .

Property satisfaction is defined on whole programs, i.e., programs without missing definitions.

Thus, from a security perspective, this considers only a passive attacker model, where the attacker

observes the execution and, e.g., retrieves secrets from that. To consider a stronger model similarly

to what existing work does [Abate et al. 2021a, 2019; Backes et al. 2014; Bengtson et al. 2011;

Fournet et al. 2007; Gordon and Jeffrey 2003; Maffeis et al. 2008; Michael et al. 2023; Sammler

et al. 2019; Swasey et al. 2017], the concept of satisfaction can be extended with robustness. Robust
satisfaction considers partial programs 𝑝 , i.e., components with missing imports, which cannot

run until said imports are fulfilled. To remedy this, linking takes two partial programs 𝑝1, 𝑝2 and

produces a whole program𝑤 , i.e., link (𝑝1;𝑝2) = 𝑤 . As typically done in works that consider the

execution of partial programs [Abate et al. 2019; Ahmed and Blume 2011; Bowman and Ahmed

2015; Devriese et al. 2017a,b; El-Korashy et al. 2021; Patrignani and Garg 2021; Patterson and Ahmed

2017; Van Strydonck et al. 2019], this paper assumes that whole programs are the result of linking

partial programs referred to as context (ctx) and component (comp). The context is an arbitrary

program and thus has the role of an attacker that can interact with the component by means of

whatever features the programming language has, and the component is what is security-relevant.

With this, Definition 2.1 (Property Satisfaction) can be extended as follows: for components 𝑝 to

robustly satisfy a property 𝜋 , take an attacker context 𝐶 and link it with 𝑝 , the resulting whole

program must satisfy 𝜋 .

Definition 2.2 (Robust Satisfaction). ⊢𝑅 𝑝 : 𝜋
def
= ∀𝐶 , if link (𝐶;𝑝) = 𝑤 , then ⊢ 𝑤 : 𝜋 .

Example 2.3 (Double Free in Bluetooth Subsystem). Consider CVE-2021-3564 [BlockSec 2021],

one of many submissions for a double-free vulnerability. The vulnerability arises due to a race

condition where the context-level function hci_cmd_work was not expected to behave maliciously,

since it resides in the same source-code repository where the vulnerability occurs. Nevertheless, the

component-level code of hci_dev_do_open is linked with hci_cmd_work and does not atomically

check whether a pointer has been freed already: Therefore, hci_dev_do_open does not satisfy the

no-double-frees property robustly, since there is an implementation for hci_cmd_work that leads
to a violation of that property when linked with hci_dev_do_open.

4

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Secure Composition of Robust and Optimising Compilers POPL ’24, January 17-19, 2024, London, UK

2.2 Secure Compilers
A compiler (𝛾LL) translates syntactic descriptions of programs from a source (L) into a target (L)
programming language. This translation is considered correct if it is semantics-preserving. That is,

for a whole program w, the compiler should relate the L semantics of w with the semantics of T
of the compiled counterpart of p in such a way that they are „compatible”. Unfortunately, correct

compilers may be insecure compilers [Abadi 1999a; Ahmed et al. 2018; Kennedy 2006; Patrignani

et al. 2019] and programs translated by insecure compilers can violate security properties that

the programmer assumes to hold. To define when a compiler is secure, this paper uses the robust

compilation framework [Abate et al. 2019], which the following definition summarises.

For compilers 𝛾LL to robustly preserve a class of properties C, if for any property 𝜋 of that class C

and programs p written in L where p robustly satisfies 𝜋 , then the compilation of p, 𝛾LL (p), must

robustly satisfy 𝜋 .

Definition 2.4 (Robust Compilation). ⊢ 𝛾LL : C
def
=∀ (𝜋 ∈ C) (p ∈ Ltms) , if ⊢𝑅 p : 𝜋 , then ⊢𝑅 𝛾LL (p) : 𝜋 .

Note that a class of properties C can represent just one property 𝜋 by lifting [Clarkson and

Schneider 2008] that property to sets of properties, i.e., use the powerset of 𝜋 instead of 𝜋 itself.

Because of this, this paper writes ⊢ 𝛾LL : 𝜋 , even though 𝜋 is a property and not a class.

Example 2.5 (Types). Suppose L is a statically-typed language similar to C and T is dynamically

typed, where both share the same syntax up to dynamic type checks. Consider the following L
component and its compiled version below.

fn foo (char ∗ x, int n) := ifz valid_ptr(x, n, sizeof (char)) then x[0] else − 1
fn foo (x, n) := ifz valid_ptr(x, n, sizeof (char)) then x[0] else − 1

While the compiler emits code that may look correct, the generated code does not check that the

provided argument is of the right type. Even though the pointer x is checked for validity, the

context foo((int∗)y, 1) is able to provoke a read out of bounds. Suppose the component transferred

control to the context and passed ownership of a char pointer y sized 1 cells, the context can now

call the component again, casting this buffer to an int∗ prior to that call. The pointer is valid for

one char-sized memory cell, as expected, but the actual read operation now returns sizeof (int)
many bytes instead of just sizeof (char) many. Thus, even if foomay have been robust with respect

to the SMS, its compiled counterpart is not and therefore the compiler fails to attain Definition 2.4.

3 SECURITY PROPERTIES: FORMALISATION, ENFORCEMENT AND COMPOSITION
This section introduces a tracemodel and uses it to define the key properties of interest for this paper:

TMS, SMS, MS, and sCCT (Section 3.1). These properties are of practical importance (as mentioned

in Section 1) and also of interest in the case study (Sections 5 and 6) this paper presents later. Lastly,

for each of the key properties, this section introduces corresponding monitors (Section 3.2) that

check them.

3.1 Specification Trace Model

(Security Tag) 𝜎 ::= � | � (Control Tag) 𝑡 ::= ctx | comp (Event) 𝑎 ::= 𝜀 | | 𝑎𝑏 ; 𝑡 ;𝜎
(Pre-event) 𝑎𝑏 ::= Alloc 𝑙 n | Dealloc 𝑙 | Use 𝑙 n | Branch n | Binop n

The specification trace model defines events as either the empty event (𝜀), a crash (), or as
tuples consisting of a pre-event, a control-tag, and a security-tag. The purpose of the model is to

define key security properties of interest, such as MS or a stricter variant of cryptographic constant

time. To this end, security-tags indicate whether an event contains sensitive information (�) or not

5

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

(�), while control-tags state whether the context (ctx) or the component (comp) are responsible for

emitting the event. The latter is necessary to be able to ignore actions done by a spurious context

that, e.g., immediately deallocates a memory location twice, thus violating TMS [Nagarakatte et al.

2010]. Lastly, pre-events describe the actual kind of event that happened. One such kind is the

allocation event (Alloc 𝑙 n) that fires whenever a program claims 𝑛 cells of memory and stores them

at address 𝑙 . Dually, deallocation (Dealloc 𝑙) announces that the object at location 𝑙 is freed. These

two events alone are enough to provide a partial description of TMS by requiring that, e.g., there is

only one deallocation event that carries a location 𝑙 . To be able to express SMS, there is also an event

to describe reads from and writes to memory (Use 𝑙 n). Finally, for cryptographic code, there is a

general guideline that secrets must not be visible on a trace. Moreover, an instruction whose timing

is data-dependent must not have a secret as an operand. Typical operations with data-dependent

timing are branches and certain binary operations, such as division
2
. Both operations are also

modelled in the specification trace model (Branch n and Binop n).

3.1.1 Temporal Memory Safety. TMS is a safety property that describes that an unallocated object

must not be used in any way. Moreover, the property requires that all allocated objects must be

deallocated at some point.

Definition 3.1 (TMS).

tms :=

𝑎

����������
Alloc 𝑙 n;t;𝜎 ≤𝑎 Dealloc 𝑙 ;t;𝜎’

Use 𝑙 n;t;𝜎 ≤𝑎 Dealloc 𝑙 ;t;𝜎’

if Alloc 𝑙 n;t;𝜎 in 𝑎 then Dealloc 𝑙 ;t;𝜎’ in 𝑎

at most one Dealloc 𝑙 ;t;𝜎 in 𝑎

at most one Alloc 𝑙 n;t;𝜎 in 𝑎

Hereby, the notation 𝑎1 ≤𝑎 𝑎2 means that if 𝑎1 is in 𝑎 and if 𝑎2 is in 𝑎, then 𝑎1 appears before 𝑎2.

3.1.2 Spatial Memory Safety. SMS prohibits out-of-bounds accesses:

Definition 3.2 (SMS).

sms :=
{
𝑎
��
If Alloc 𝑙 n;t;𝜎 ≤𝑎 Use 𝑙 m;t;𝜎’, then𝑚 < 𝑛

}
3.1.3 Memory Safety. Full MS (similar to earlier work [Jim et al. 2002; Michael et al. 2023; Na-

garakatte et al. 2009, 2010; Necula et al. 2005]) is then described as the conjunction of Definitions 3.1

and 3.2. Note, however, that this definition says nothing about memory-safety issues introduced by

side-channels, such as speculation.

Definition 3.3 (MS).
ms := tms∩ sms

3.1.4 Strict Cryptographic Constant Time. CCT is a hypersafety property [Barthe et al. 2018] and,

thus, difficult to check with monitors. This is because, intuitively, hypersafety properties can relate

multiple execution traces with eachother, but monitors work on a single execution. To sidestep this

issue, this section defines the property sCCT, a stricter variant of CCT that enforces the policy that

no secret appears on a trace (inspired by earlier work [Almeida et al. 2017]).

Definition 3.4 (sCCT).

scct :=
{
𝑎
�� 𝑎 = [·] or 𝑎 = 𝑎𝑏 ; 𝑡 ;� · 𝑎′ ∧ 𝑎′ ∈ scct

}
2
This is highly architecture-dependent, but division is an operation that serves as a classic example for a data-dependent

timing instruction, e.g., [Arm 2020, p. 755].

6

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Secure Composition of Robust and Optimising Compilers POPL ’24, January 17-19, 2024, London, UK

3.1.5 Memory Safe, Strict Cryptographic Constant Time. The combination of MS and sCCT is the

intersection of these properties, MS+sCCT. Since MS and sCCT are just sets of traces that, intuitively,

contain all program behaviors that follow a security policy, the intersection of them contains all

program behaviors that follow both security policies, i.e., it entails all program behaviours that are

both MS and sCCT.

Definition 3.5 (MS and sCCT).

msscct := ms∩ scct

3.2 Monitors
Monitors enforce safety properties by accepting or rejecting traces, i.e., if it rejects a trace, the trace

does not satisfy the property the monitor checks. Since reasoning on monitors is easier than directly

on just traces, this section presents a monitor for each of the previously shown safety properties

(Section 3.1). To lessen the burden when proving that a monitor accepts the trace of a program

execution, each monitor uses a custom trace model that contains only the relevant information

related to the property the monitor checks. To go from specification traces 𝑎 to monitor-level traces

𝒂, each property 𝜋 has an associated event agreement relation 𝑎 �𝜋 𝒂. Figure 1 shows how the

event agreement is lifted to traces. The trace agreement is the same for all properties 𝜋 up to the

𝑎 �∗𝜋 𝒂 „Specification-level trace 𝑎 agrees with monitor-level trace 𝒂 with respect to property 𝜋 .”

(traceagree-empty)

[·] �∗𝜋 [·]

(traceagree-ign-L)

𝑎 �∗𝜋 𝒂

𝜀 · 𝑎 �∗𝜋 𝒂

(traceagree-ign-R)

𝑎 �∗𝜋 𝒂

𝑎 �∗𝜋 𝜺 · 𝒂

(traceagree-cons)

𝑎 �𝜋 𝒂 𝑎 �∗𝜋 𝒂

𝑎 · 𝑎 �∗𝜋 𝒂 · 𝒂

Fig. 1. Trace-Agreement relation that equates specification-level traces with monitor-level traces.

use of the event agreement in Rule traceagree-cons. With agreements, this section defines monitor

satisfaction for traces and then it proves that monitor satisfaction implies property satisfaction.

To this end, monitor satisfaction is defined as follows. A specification trace 𝑎 monitor-satisfies

property 𝜋 iff there exists a (final) monitor state𝑇 and an abstract trace 𝒂 such that the specification

trace 𝑎 agrees with abstract trace 𝒂 and the initial monitor
3
can step to the (final) monitor state 𝑇

with abstract trace 𝒂.

Definition 3.6 (Monitor Satisfaction). ⊢𝑚𝑜𝑛 𝑎 : 𝜋
def
= ∃𝒂 𝑇 , 𝑎 �∗𝜋 𝒂 and ⊢ ∅ 𝒂 ∗𝑇 .

3.2.1 Monitor for TMS.

(Abstract Store) 𝑇𝑇𝑀𝑆 ::= {allocated : 𝐿 × 𝑡, freed : 𝐿 × 𝑡} ∅ := {allocated : ∅, freed : ∅}
(Abstract Events) 𝒂 ::= 𝜺 | 𝑨𝒍𝒍𝒐𝒄 𝑙 𝑡 | 𝑫𝒆𝒂𝒍𝒍𝒐𝒄 𝑙 𝑡 | 𝑼𝒔𝒆 𝑙 𝑡 |

⊢ 𝑇𝑇𝑀𝑆
𝒂
𝑇𝑇𝑀𝑆

′
„Monitor 𝑇𝑇𝑀𝑆 does one step to 𝑇𝑇𝑀𝑆

′
given event 𝒂.”

3
In this paper, for all monitors, the initial monitor state is denoted as ∅.

7

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

(tms-use)

(𝑙 ; 𝑡) ∈ 𝑇𝑇𝑀𝑆 .allocated (𝑙 ; 𝑡) ∉ 𝑇𝑇𝑀𝑆 .freed

⊢ 𝑇𝑇𝑀𝑆
𝑼𝒔𝒆 𝑙 𝑡

𝑇𝑇𝑀𝑆

(tms-alloc)

(𝑙 ; 𝑡) ∉ 𝑇𝑇𝑀𝑆 .allocated (𝑙 ; 𝑡) ∉ 𝑇𝑇𝑀𝑆 .freed

𝑇𝑇𝑀𝑆
′ = {allocated : 𝑇𝑇𝑀𝑆 .allocated ∪ {(𝑙 ; 𝑡)} , freed : 𝑇𝑇𝑀𝑆 .freed}

⊢ 𝑇𝑇𝑀𝑆
𝑨𝒍𝒍𝒐𝒄 𝑙 𝑡

𝑇𝑇𝑀𝑆
′

(tms-dealloc)

(𝑙 ; 𝑡) ∈ 𝑇𝑇𝑀𝑆 .allocated (𝑙 ; 𝑡) ∉ 𝑇𝑇𝑀𝑆 .freed

𝑇𝑇𝑀𝑆
′ = {allocated : 𝑇𝑇𝑀𝑆 .allocated \ {(𝑙 ; 𝑡)} , freed : 𝑇𝑇𝑀𝑆 .freed ∪ {(𝑙 ; 𝑡)}}

⊢ 𝑇𝑇𝑀𝑆
𝑫𝒆𝒂𝒍𝒍𝒐𝒄 𝑙 𝑡

𝑇𝑇𝑀𝑆
′

For TMS, the state of the monitor is a record with two sets keeping track of allocated and

deallocated locations. Rule tms-use simply requires that a location is (i) allocated and (ii) not freed.

Rules tms-alloc and tms-dealloc both require a location to not be freed already and extend the

monitor state accordingly. This restriction effectively disallows reallocation to reassign the same

location to an object. However, the definition can easily be adapted by, e.g., attaching a natural

number serving as a counter. Contrary to other monitors in this paper, the multi-step relation of

the TMS monitor is non-standard:

⊢ 𝑇𝑇𝑀𝑆
𝒂 ∗𝑇𝑇𝑀𝑆

′
„Monitor 𝑇𝑇𝑀𝑆 multi-steps to 𝑇𝑇𝑀𝑆

′
given trace 𝒂.”

(tms-refl)

𝑇𝑇𝑀𝑆 .allocated = ∅

⊢ 𝑇𝑇𝑀𝑆

[·] ∗𝑇𝑇𝑀𝑆

(tms-ign-trans)

⊢ 𝑇𝑇𝑀𝑆
𝒂 ∗𝑇𝑇𝑀𝑆

′

⊢ 𝑇𝑇𝑀𝑆
𝜺 ·𝒂

𝑇𝑇𝑀𝑆
′

(tms-trans)

⊢ 𝑇𝑇𝑀𝑆
𝒂
𝑇𝑇𝑀𝑆

′ ⊢ 𝑇𝑇𝑀𝑆
′ 𝒂 ∗𝑇𝑇𝑀𝑆

′′

⊢ 𝑇𝑇𝑀𝑆
𝒂 ·𝒂

𝑇𝑇𝑀𝑆
′′

Rules tms-ign-trans and tms-trans are the same for all monitors, but Rule tms-refl has, in this

case, an additional premise that no more locations should be allocated. This rejects the behavior of

programs that forget to free memory.

𝑎 �tms 𝒂 „Abstract event 𝒂 is equivalent to 𝑎 with respect to TMS.”

(tms-alloc-authentic)

Alloc 𝑙 𝑛; 𝑡 ;𝜎 �tms 𝑨𝒍𝒍𝒐𝒄 𝑙 𝑡

(tms-branch-authentic)

Branch 𝑛 �tms 𝜺

(tms-abort-authentic)

 �tms
The trace agreement is entirely straightforward, so only allocation, branch, and crash are shown.

Lemma 3.7 (Traces with Monitor Satisfaction are tms). If ⊢𝑚𝑜𝑛 𝑎 : tms, then 𝑎 ∈ tms.

Example 3.8 (A program not satisfying TMS). Consider the following C++11 library that calls

strncpy (Example 1.1) and prints the result to the standard output stream.

int greet() { // allocates 12 chars containing a greeting message

char* greetings = new char [12] { "Hello␣POPL!" }; // <- address 𝑙𝑥

char* to = new char [12]; // <- address 𝑙𝑦

strncpy (12, to, greetings);

delete to;

printf("%cOPL\n", to[6]);

}

8

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Secure Composition of Robust and Optimising Compilers POPL ’24, January 17-19, 2024, London, UK

Up to the body of printf, the program execution yields the specification trace Alloc 𝑙𝑥 12; comp;� ·
Alloc 𝑙𝑦 12; comp;� ·Use 𝑙𝑥 0; comp;� ·Use 𝑙𝑥 0; comp;� ·Use 𝑙𝑦 0; comp;� ·Use 𝑙𝑥 1; comp;� · . . . ·
Use 𝑙𝑥 12; comp;� · Dealloc 𝑙𝑦 ; comp;� · Use 𝑙𝑦 6; comp;�. Relating this trace to abstract monitor

events yields 𝒂 = 𝑨𝒍𝒍𝒐𝒄 𝑙𝑥 comp · 𝑨𝒍𝒍𝒐𝒄 𝑙𝑦 comp · 𝑼𝒔𝒆 𝑙𝑥 comp · 𝑼𝒔𝒆 𝑙𝑥 comp · 𝑼𝒔𝒆 𝑙𝑦 comp · . . . ·
𝑼𝒔𝒆 𝑙𝑥 comp ·𝑫𝒆𝒂𝒍𝒍𝒐𝒄 𝑙𝑦 comp ·𝑼𝒔𝒆 𝑙𝑦 comp. Remembering the definition of strncpy (Example 1.1),

observe that it does not deallocate its arguments. Even though the trace contains an out-of-bounds

access right before returning from strncpy, this is no concern for TMS, since the location 𝑙𝑥 is still

allocated. However, having returned from strncpy, the greet function continues and deallocates

𝑙𝑦 whose subsequent use in the printf call is a use-after-free bug.

The fix would be to delete greetings instead of to and add a delete to after the printf call,
which leads to the abstract monitor trace 𝒂′ = 𝑨𝒍𝒍𝒐𝒄 𝑙𝑥 comp · 𝑨𝒍𝒍𝒐𝒄 𝑙𝑦 comp · 𝑼𝒔𝒆 𝑙𝑥 comp ·
𝑼𝒔𝒆 𝑙𝑥 comp · 𝑼𝒔𝒆 𝑙𝑦 comp · . . . · 𝑼𝒔𝒆 𝑙𝑥 comp · 𝑫𝒆𝒂𝒍𝒍𝒐𝒄 𝑙𝑥 comp · 𝑼𝒔𝒆 𝑙𝑦 comp. It follows that

⊢𝑚𝑜𝑛 𝒂′ : tms and from Lemma 3.7 (Traces with Monitor Satisfaction are tms), it follows that the

program satisfies Definition 3.1 (TMS), even though the program still violates SMS.

3.2.2 Monitor for SMS.

(Abstract Store) 𝑇𝑆𝑀𝑆 := 𝐿 × 𝑡 × N (Abstract Events) 𝒂 ::= 𝜺 | 𝑨𝒍𝒍𝒐𝒄 𝑙 𝑡 𝑛 | 𝑼𝒔𝒆 𝑙 𝑡 𝑛

⊢ 𝑇𝑆𝑀𝑆
𝒂
𝑇𝑆𝑀𝑆

′
„Monitor 𝑇𝑆𝑀𝑆 does one step to 𝑇𝑆𝑀𝑆

′
given event 𝒂.”

(sms-use)

(𝑙 ; 𝑡 ;𝑚) ∈ 𝑇𝑆𝑀𝑆 𝑛 < 𝑚

⊢ 𝑇𝑆𝑀𝑆
𝑼𝒔𝒆 𝑙 𝑡 𝑛

𝑇𝑆𝑀𝑆

(sms-alloc)

(𝑙 ; 𝑡 ;𝑚) ∉ 𝑇𝑆𝑀𝑆

⊢ 𝑇𝑆𝑀𝑆
𝑨𝒍𝒍𝒐𝒄 𝑙 𝑡 𝑛

𝑇𝑆𝑀𝑆 ∪ {(𝑙 ; 𝑡 ;𝑛)}
The state of the monitor for SMS is a set containing tuples of locations, control-tags, and the alloca-

tion size. In comparison to the trace model of the TMS monitor, the trace model here is extended by

sizing and positional information. Rule sms-use performs a bounds check and Rule sms-alloc adds

bounds information to the state of the monitor. The trace agreement is entirely straightforward

and similar to the one for TMS.

Lemma 3.9 (Traces with Monitor Satisfaction are sms). If ⊢𝑚𝑜𝑛 𝑎 : sms, then 𝑎 ∈ sms.

Example 3.10 (Normal invocation of strncpy). Consider the insecure strncpy function from

Example 1.1 with a context strncpy(2, x, y), where x and y are pointers to valid regions of

memory with allocated space for exactly two cells and do not contain the null-terminating character

’\0’. For the sake of this example, the pointers have been allocated by the component and passed

to the context. The loop of strncpy will copy exactly two cells and then check the loop condition

for the last time. At that stage, the induction variable i is equal to 2 and, unfortunately, the order of
checks is such that first the cell x[i] is read prior to bounds checking i < n. Because of this, there
is an out-of-bounds memory access right before exiting the function. This is also visible on the trace,

which can be sketched as . . . ·Alloc 𝑙𝑥 2; comp;� · . . . ·Alloc 𝑙𝑦 2; comp;� · . . . · Use 𝑙𝑥 0; comp;� ·
Use 𝑙𝑦 0; comp;� ·Use 𝑙𝑥 1; comp;� ·Use 𝑙𝑦 1; comp;� ·Use 𝑙𝑥 2; comp;� · . . ., where 𝑙𝑥 and 𝑙𝑦 are

the memory addresses associated to x and y, respectively. Omitting the events for all „. . .” for sake

of brevity, the abstract monitor trace of this is 𝑨𝒍𝒍𝒐𝒄 𝑙𝑥 comp 2 · 𝑨𝒍𝒍𝒐𝒄 𝑙𝑦 comp 2 · 𝑼𝒔𝒆 𝑙𝑥 comp 0 ·
𝑼𝒔𝒆 𝑙𝑦 comp 0 · 𝑼𝒔𝒆 𝑙𝑥 comp 1 · 𝑼𝒔𝒆 𝑙𝑦 comp 1 · 𝑼𝒔𝒆 𝑙𝑥 comp 2.

After the allocation events, the state of the monitor is

{
(𝑙𝑥 ; comp; 2), (𝑙𝑦 ; comp; 2)

}
. All uses up

to the last are accepted by the monitor, but the last event does not satisfy the premise 2 < 2 in

Rule sms-use. Therefore, the whole program (strncpy linked with this kind of context) is not SMS.

3.2.3 Combining TMS and SMS Monitors to obtain MS.

9

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

⊢ 𝑇𝑀𝑆
𝒂
𝑇𝑀𝑆

′
„Monitor 𝑇𝑀𝑆 does one step to 𝑇𝑀𝑆

′
given event 𝒂.”

(ms-step)

⊢ 𝑇𝑇𝑀𝑆

𝒂tms

𝑇𝑇𝑀𝑆
′ ⊢ 𝑇𝑆𝑀𝑆

𝒂sms

𝑇𝑆𝑀𝑆
′

⊢ (𝑇𝑇𝑀𝑆 ,𝑇𝑆𝑀𝑆)
(𝒂tms,𝒂sms) (𝑇𝑇𝑀𝑆

′,𝑇𝑆𝑀𝑆
′)

The combined monitor runs the one for TMS and the one for SMS in a lockstep. The trace agreement

similarly just relates a specification event with an abstract TMS-event 𝒂tms and with an abstract

SMS-event 𝒂sms.

Lemma 3.11 (Traces with Monitor Satisfaction are ms). If ⊢𝑚𝑜𝑛 𝑎 : ms, then 𝑎 ∈ ms.

3.2.4 Monitor for sCCT.

(Abstract Store) 𝑇𝑠𝐶𝐶𝑇 := ∅ (Abstract Events) 𝒂 := 𝜺 | | 𝑨𝒏𝒚

⊢ 𝑇𝑠𝐶𝐶𝑇 𝒂
𝑇𝑠𝐶𝐶𝑇

′
„Monitor 𝑇𝑠𝐶𝐶𝑇 does one step to 𝑇𝑠𝐶𝐶𝑇

′
given event 𝒂.”

(scct-none)

⊢ 𝑇𝑠𝐶𝐶𝑇 𝜺
𝑇𝑠𝐶𝐶𝑇

(scct-abort)

⊢ 𝑇𝑠𝐶𝐶𝑇

𝑇𝑠𝐶𝐶𝑇

The monitor state for the sCCT monitor is completely empty, since it does not need to keep track

of information. As soon as any event is hit, the execution gets stuck, since any event is considered

confidental from the perspective of this monitor.

𝑎 �scct 𝒂 „Abstract event 𝒂 is equivalent to 𝑎 with respect to CCT.”

(scct-low-authentic)

𝑎𝑏 ; 𝑡 ;� �scct 𝜺

(scct-high-authentic)

𝑎𝑏 ; 𝑡 ;� �scct 𝑨𝒏𝒚

(scct-empty-authentic)

𝜀 �scct 𝜺

(scct-abort-authentic)

 �scct
Accordingly, the event agreement simply disregards all events that involved public data (�) while

mapping any other event that does involve private data (�) to the abstract 𝑨𝒏𝒚 event.

Lemma 3.12 (Monitor Traces are scct). If ⊢𝑚𝑜𝑛 𝑎 : scct, then 𝑎 ∈ scct.

Example 3.13 (Data-independent timing mode). Consider the call strncpy(1,x,y) to the strncpy
function (Example 1.1) with low (�) security for x and high security (�) for y. The trace of just
the copying part inside of strncpy looks like Use 𝑙𝑥 0; comp;� · Use 𝑙𝑦 0; comp;�. In terms of

the abstract monitor trace, this is just 𝑨𝒏𝒚. Running this on the monitor would result in getting

stuck, since there is no matching rule to step in the presence of 𝑨𝒏𝒚 event. By means of additional

features to ensure cryptographic constant time even in the presence of memory reads and loads,

such as a flag to enable a data independent timing mode, which is present in both Arm [Arm 2020,

p. 543] and Intel [Intel 2023, p. 80] processors, the original trace now does Use 𝑙𝑦 0; comp;� instead

of Use 𝑙𝑦 0; comp;�. Because of this, the whole trace of the component equates to 𝜺 and the monitor

can step without getting stuck.

3.2.5 Combining MS and sCCT Monitors to obtain MS+sCCT. The combination of monitors for

MS and sCCT yields one for MS+sCCT. The construction is entirely similar to the one for MS

(Section 3.2.3).

Lemma 3.14 (Traces with Monitor Satisfaction are msscct). If ⊢𝑚𝑜𝑛 𝑎 : msscct, then 𝑎 ∈
msscct.

10

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Secure Composition of Robust and Optimising Compilers POPL ’24, January 17-19, 2024, London, UK

4 COMPOSING SECURE COMPILERS
This section presents the key meta-theoretic results of this paper concerning sequential compiler

composition (and of optimisation passes) (Section 4.1) and concerning other kinds of compiler

composition (Section 4.2).

4.1 Secure Sequential Composition
The main result is that secure compilers in the robust compilation framework [Abate et al. 2019]

compose sequentially. This is not intuitive in the sense that in the security domain, composition

does not work without additional generalizations [Canetti et al. 2006; Fabian et al. 2022; McCullough

1988]. The sequential composition of compilers 𝛾LL and 𝛾L
L is defined as follows: Given an L program

p and compilers 𝛾LL, 𝛾
L
L, its compiled L counterpart is obtained by plugging p into 𝛾LL ◦ 𝛾L

L.

Definition 4.1. 𝛾LL ◦ 𝛾L
L
def
= Given p, yield 𝛾L

L
(
𝛾LL (p)

)
Consider the compilation chain for TypeScript. First, TypeScript programs are translated to

JavaScript which, e.g., V8 [Google 2008] eventually compiles in parts to IgnitionBC. The following
theorem establishes what happens if all these compilation steps were robustly secure with respect

to MS: The resulting IgnitionBC code would be MS regardless of the context the binary runs in.

Given 𝛾LL robustly preserves C1 and 𝛾
L
L robustly preserves C2, it follows that their sequential

composition 𝛾LL ◦ 𝛾L
L robustly preserves the intersection of classes C1 and C2.

Theorem 4.2 (Seqential Composition of Secure Compilers). If ⊢ 𝛾LL : C1 and ⊢ 𝛾L
L : C2, then

⊢ 𝛾LL ◦ 𝛾L
L : C1 ∩ C2.

Since the composition of secure compilers is again a secure compiler, the theorem generalises to

a whole chain of 𝑛 secure compilers.

4.1.1 Securing Optimisations. Notably, real-world compilation chains also perform a series of

(sequential) passes whose main purpose is not necessarily to translate from one language to

another, but to, e.g., optimise the code or enforce a certain property. Both examples can be seen in

practice, e.g. as in the work of [Akritidis et al. 2009; Manjikian and Abdelrahman 1997; Nagarakatte

et al. 2009, 2010; Wegman and Zadeck 1991] and many more. Consider the following two LLVM

optimisation passes: CF, which rewrites constant expressions to the constant they evaluate to, and

DCE, which removes dead code by rewriting conditional branches. The order in which CF and

DCE are performed influences the final result of the compilation (see Figure 2). This phase ordering

let a = true in

if a then

print "a"

else

print "b"

if true then

print "a"

else

print "b"

print "a"DCE

CF DCE

Fig. 2. Example program where the level of optimisations differ for one pass of applying CF and DCE in any
order. Every edge is a compilation pass and the label on the edge states what the pass does, i.e., CF or DCE.
The source code in the nodes is a glorified compiler intermediate representation and the code gets more
optimised towards the right hand side of the figure.

problem is well–known in literature and a practical solution is to simply perform a fixpoint iteration

11

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

of the optimisation pipeline [Click and Cooper 1995]. Compiler engineers typically try to find an

order of optimisations that yields well-optimised programs for either code size [Cooper et al. 1999]

or performance [Kulkarni et al. 2006]. Corollary 4.3 justifies that any such order of compilation

passes is valid with respect to security. So, given two compilation passes 𝛾1
L
L, 𝛾2

L
L, both robustly

preserving class C1 or C2, respectively, for any order of their composition the composed compiler

robustly preserves the intersection of C1 and C2.

Corollary 4.3 (Seqential Composition of Secure Compilers). If ⊢ 𝛾1L
L : C1 and ⊢ 𝛾2L

L : C2,
then ⊢ 𝛾1L

L ◦ 𝛾2L
L : C1 ∩ C2 and ⊢ 𝛾2L

L ◦ 𝛾1L
L : C2 ∩ C1.

4.2 Secure Upper and Lower Composition
Besides sequential composition, there are two other compositions, namely an upper, i.e., a compiler

that takes multiple inputs and yields one output, and a lower composition, i.e., a compiler that

takes one input and yields multiple outputs. Define the upper composition 𝛾L+LL as follows: Given a

program p, its compiled counterpart is obtained by plugging p into 𝛾LL if p ∈ L or by plugging p

into 𝛾L
L if p ∈ L.

Definition 4.4 (Upper Composition). 𝛾L+LL
def
= 𝜆p.

{
if p ∈ L, then 𝛾LL (p)
if p ∈ L, then 𝛾L

L (p)

Examples of this are present in industry: Consider the Java Virtual Machine bytecode JVMBC,
which is a popular target for programming language designers due to its high performance and

relevance in industry. Compilers for several programming languages have it as their target language,

some popular instances are Java and Kotlin. Technically speaking, they both compile to class files

and Kotlin objects are considered to be the same as Java objects at that point. Both languages can

be used at the same time in one project [Google [n. d.]]. A compiler that accepts both Java and
Kotlin code translating to the same target language or intermediate representation performs a

kind of upper composition. Now, the following theorem tells us what happens if these are secure:

Given𝛾LL robustly preserves C1 and𝛾
L
L robustly preserves C2, it follows that their upper composition

𝛾L+LL robustly preserves the intersection of classes C1 and C2.

Theorem 4.5 (Upper Composition of Secure Compilers). If ⊢ 𝛾LL : C1 and ⊢ 𝛾L
L : C2, then

⊢ 𝛾L+LL : C1 ∩ C2.

Dually, the lower composition is concerned about compilers that accept the same source but

yield different target languages. Define the lower composition 𝛾LL+L as follows: Given a program p,

its compiled counterpart is obtained by plugging p into 𝛾LL or by plugging p into 𝛾LL, respectively,

based on the internal decision.

Definition 4.6 (Lower Composition). 𝛾LL+L
def
= 𝜆p, 𝐿.

{
if 𝐿 = L, then 𝛾LL (p)
if 𝐿 = L, then 𝛾LL (p)

Consider two compilers both accepting LLVMIR [Lattner and Adve 2004] and one of them emits

x86_64, while the other emits ARMv8. It is intuitive that they are in some sense composed in the

LLVM framework, but the decision of when to use one over the other is inherently internal to the

formalisation effort of this kind of composition. For example, the user of this compiler provides an

explicit flag that instructs to emit x86_64 or the framework itself detects the target platform via

heuristics, such as supported instructions.

12

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Secure Composition of Robust and Optimising Compilers POPL ’24, January 17-19, 2024, London, UK

The following theorem demonstrates what happens if the involved compilers are secure: Given

𝛾LL robustly preserves C1 and 𝛾
L
L robustly preserves C2, it follows that their lower composition 𝛾LL+L

robustly preserves the intersection of classes C1 and C2.

Theorem 4.7 (Lower Composition of Secure Compilers). If ⊢ 𝛾LL : C1 and ⊢ 𝛾L
L : C2, then

⊢ 𝛾LL+L : C1 ∩ C2.

5 CASE STUDY: LANGUAGE FORMALISATIONS
This section defines programming languages that the secure compilers defined in the next section

will use. To this end, this section defines the languages Ltms, L, Lms, and Lscct which share many

common elements (presented in Section 5.1). Ltms is the only statically typed language and exhibits

the property that all well-typed programs are TMS (Section 5.2). However, not all Ltms programs are

SMS. That is, there are well-typed Ltms programs that perform an out-of-bounds access. Language L
is untyped and does not provide any guarantees with regards to MS (Section 5.3). Lms is exactly the

same language as L, but this paper still distinguishes the two for sake of readability (Section 5.4).

All three languages — so Ltms, L, and Lms — assume CCT to hold.

Writing code attaining CCT should not be of the programmer’s concerns [Cauligi et al. 2019].

Such consideration is also backed up by architecture providing a data (operand) independent timing

mode, such as processors by Arm [Arm 2020, p. 543] and Intel [Intel 2023, p. 80]. In spirit of this,

language Lscct allows violating CCT by emitting events on, e.g., branching and division, that contain

secrets (Section 5.5), but provides a way to read and write to a model–specific register that enables a
“CCT-mode”.

5.1 Shared Language Definitions

(Expressions) 𝑒 ::= 𝑥 | 𝑣 | 𝑒1⊕𝑒2 | 𝑥 [𝑒] | 𝑙𝑒𝑡 𝑥=𝑛𝑒𝑤 𝑒1 [𝑒2] 𝑖𝑛 𝑒3 | 𝑑𝑒𝑙𝑒𝑡𝑒 𝑥 | 𝑥 [𝑒1] ←𝑒2
| ⟨𝑒1;𝑒2⟩ | 𝑒.0 | 𝑒.1 | 𝑙𝑒𝑡 𝑥=𝑒1 𝑖𝑛 𝑒2 | 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒 | 𝑐𝑎𝑙𝑙 𝑔 𝑒 | 𝑖 𝑓 𝑧 𝑒 𝑡ℎ𝑒𝑛 𝑒1 𝑒𝑙𝑠𝑒 𝑒2 | 𝑎𝑏𝑜𝑟𝑡 ()

(Types) 𝜏 ::= N𝑡 | 𝜏1 × 𝜏2 (Functions) 𝐹 ::= 𝑓 𝑛 foo 𝑥 := 𝑒 (Libraries) Ξ ::= [·] | 𝐹,Ξ
(Component Names) 𝜉 ::= [·] | foo, 𝜉 (Programs) ⟨ Ξctx;Ξcomp⟩

Above is the shared syntax of all the programming languages of this paper. Variables are referred

to as 𝑥,𝑦, 𝑧, 𝑎, 𝑏, 𝑐, . . . while functions may be referred to as multi-character words, such as foo,
as well as short-forms like 𝑓 , 𝑔, ℎ. All languages share the type N𝑡 representing natural numbers.

Functions are constrained to take one argument and can only call other functions listed in libraries,

which are just lists of functions. A program ⟨ Ξctx;Ξcomp⟩ is indexed by two libraries that represent

all context- and component-level functions, respectively. Lists of component-level names are

referred to as 𝜉 .

(Control Tags) 𝑡 ::= ctx | comp (Communication Tags) 𝑐 ::= ? | ! | ∅ (Poison Tags) 𝜌 ::= h | □

(Continuation Stacks) 𝐾 ::= [·] | (𝐾 ;𝑔), 𝐾 (Control Flow States) Ψ ::= (Ξ;𝐾)
(Locations) 𝑙 ∈ N (Substitutions) 𝛾 ::= [·] | [𝑣 for 𝑥] , 𝛾
(Stores) Δ ::= [·] | 𝑥 ↦→ (𝑙 ; 𝑡 ; 𝜌 ;𝑛),Δ (Heaps) 𝐻 ::= [·] |𝑣, 𝐻

(Memory States) Φ ::= (𝐻 ctx
;𝐻 comp

;Δ) (States) Ω ::= (Ψ; 𝑡 ;Φ) (Runtime Terms) 𝑟 ::= Ω ⊲ 𝑒

13

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

States Ω are tuples
4
containing a control flow state Ψ, control tags 𝑡 , and a memory state Φ. A

control flow state Ψ entails a library, which provides definitions for functions calls, as well as a

stack of continuations 𝐾 . Elements of the stack 𝐾 are pairs of evaluation contexts and the name

of a function associated to that evaluation context. Memory states Φ are tuples of two separate

heaps 𝐻 and a store Δ, which contains pointer metadata, such as the concrete memory location

𝑙 , a control tag 𝑡 indicating which heap the pointer points into, a poison tag 𝜌 , as well as bounds

information 𝑛. The bounds information is a mere proof artefact that has no semantic significance.

The two separate heaps essentially model a sandbox, to prevent contexts from performing pointer

arithmetic and reading from or writing to the data owned by a component. While this prevents

the effects of out-of-bounds accesses across the context and component boundary, the goal of the

design of the languages of this paper is to be able to express security violations. To this end, the

poison tag 𝜌 indicates whether a pointer has been freedh or is still allocated □, so that pointers

can be used even after their deallocation without the semantics getting stuck. Runtime terms are

simply expressions 𝑒 paired with the operational state Ω.

(Pre-Events) 𝑎𝑏 ::= Alloc 𝑙 𝑣 | Dealloc 𝑙 | Get 𝑙 𝑣 | Set 𝑙 𝑣 𝑣 ′ | · · ·
(Events) 𝑎 ::= 𝜀 | | (𝑎𝑏 ; 𝑡 ;𝜎)

All languages use the same trace model, where events are either the empty event 𝜀, the program

crash event , or a tuple consisting of a control tag 𝑡 and a security tag 𝜎 . The former indicates

whether the component compor the context ctxis to blame for emitting this event, the latter

indicates the secrecy level of values of the emitted event, i.e., either � or �. As for pre-events, the

memory-related ones are allocation (Alloc 𝑙 𝑣), deallocation (Dealloc 𝑙), reading from (Get 𝑙 𝑣) and

writing to memory (Set 𝑙 𝑣 𝑣 ′). The following is an excerpt of the operational semantics handling

some of the memory operations.

𝑟
𝑎−→𝑝 𝑟

′
„𝑟 does one primitive step to 𝑟 ′ emitting event 𝑎.”

(𝑒 − get− ∈)
𝑡 = Ω.𝑡 Ω.Δ(𝑥) = (𝑙 ; 𝑡 ; 𝜌 ;𝑚)

𝑙 + 𝑛 ∈ domΩ.𝐻 𝑡 (𝑙 + 𝑛)

Ω ⊲ 𝑥 [𝑛]
(Get 𝑙 𝑛;𝑡)
−−−−−−−−→𝑝 Ω ⊲ 𝐻 𝑡 (𝑙 + 𝑛)

(𝑒 − set− ∉)

𝑡 = Ω.𝑡 Ω.Δ(𝑥) = (𝑙 ; 𝑡 ; 𝜌 ;𝑚)
𝑙 + 𝑛 ∉ domΩ.𝐻 𝑡

Ω ⊲ 𝑥 [𝑛] ←𝑣
(Set 𝑙 𝑛 𝑣;𝑡)
−−−−−−−−−→𝑝 Ω ⊲ 𝑣

(𝑒 − new)

Ω ⊢ 𝑧 fresh Ω ⊢ 𝑙 fresh 𝐻 𝑡
1
= Ω.𝐻 𝑡 ≪ 𝑛 Δ1 = 𝑧 ↦→ (𝑙 ;Ω.𝑡 ;□;𝑛),Ω.Δ

Ω ⊲ 𝑛𝑒𝑤 𝑥 [𝑛]𝑒
(Alloc 𝑙 𝑛;𝑡)
−−−−−−−−−→𝑝 Ω

[
𝐻 𝑡

for 𝐻 𝑡
1

]
[Δ for Δ1] ⊲ 𝑒 [𝑧 for 𝑥]

(𝑒 − dealloc)

Ω.Δ(𝑥) = (𝑙 ;Ω.𝑡 ; 𝜌 ;𝑛) Δ1 = Ω.Δ(𝑥 ↦→ (𝑙 ;Ω.𝑡 ;h;𝑛))

Ω ⊲ 𝑑𝑒𝑙𝑒𝑡𝑒 𝑥
(Dealloc 𝑙 ;𝑡)
−−−−−−−−−→𝑝 Ω [Δ for Δ1] ⊲ 0

(𝑒 − abort)

Ω ⊲ 𝑎𝑏𝑜𝑟𝑡 () −→𝑝

To demonstrate the use of the poison tag 𝜌 as metadata for pointers instead of removing them

from the store Δ, consider Rules 𝑒 − get− ∈, 𝑒 − set− ∉ and 𝑒 − dealloc . In Rule 𝑒 − dealloc, the
premise does not care at all about the actual state of the poison tag 𝜌 and just overwrites it, marking

the location as freed h. Besides that, the poison tag does not have any semantic meaning. For

language Ltms, this tag is really just some semantic metadata that programmers have no access to.

But, for the other languages, e.g., L, the poison tag is used to check pointer validity. Rule 𝑒 − new
allocates enough space on the respective heap, either 𝐻 ctx

or 𝐻 comp
depending on the execution

4
Throughout the paper, the substitution notation is also used to update entries in states Ω.

14

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Secure Composition of Robust and Optimising Compilers POPL ’24, January 17-19, 2024, London, UK

context, i.e., the value of Ω.𝑡 , and adds the appropriate metadata associated to the pointer in Δ.
Reading from Rule 𝑒 − get− ∈ and writing to memory Rule 𝑒 − set− ∉ have two cases: Either the

heap is large enough or not and, depending on that, either the actual value stored at that location

is read from or written to, or some garbage data is returned. However, note that the execution

does not get stuck in such cases, it performs a step, and emits an appropriate event. Also note that

whether a pointer is poisoned or not is not reflected on the trace.

(Pre-Events) 𝑎𝑏 ::= · · · | Call 𝑐 𝑔 𝑣 | Ret 𝑐 𝑣 | Start | End 𝑣

A key difference in comparison with the specification trace model (Section 3.1) is that, as standard

in secure compilation work [Abate et al. 2019; El-Korashy et al. 2021; Patrignani and Garg 2021],

the traces have a call and return event that signals context switches, which are referred to as

interaction events. The reason for these interaction events is technical: They are a proof artifact

for reconstructing a source context from a potentially malicious target context, where during that

translation, the insertion of some wrapper code right before context switching may be necessary

to make the proof succeed. Hereby, a Call ? foo v and Return ? v signal that program execution

transitions from context- to component-level. Contrary, Call ! foo v and Return ? v signal that

program execution transitions from component- to context-level. For calls without this context

switch, the environmental semantics attaches the ∅ tag. In the following, ¬ctx = comp and

¬comp = ctx.

𝑟
𝑎−→ectx 𝑟 „Contextual step from runtime-term 𝑟 to 𝑟 ′ emitting event 𝑎.”

(𝑒 − ret)

Ω.𝐾 = (𝐾 ; foo), 𝐾 ′ 𝜉 ⊢ foo : Ω.𝑡 ⊣ 𝑐

Ω ⊲ 𝐾 ′ [𝑟𝑒𝑡𝑢𝑟𝑛 𝑣]
(Ret 𝑐 𝑣;Ω.𝑡)
−−−−−−−−−−→ectx Ω [¬Ω.𝑡 for 𝑡]

[
𝐾 ′ for 𝐾

]
⊲ 𝐾 [𝑣]

(𝑒 − call − notsame)

𝑓 𝑛 foo 𝑥 := 𝑒 ∈ Ω.Ξ 𝜉 ⊢ foo : Ω.𝑡 ⊣ 𝑐

Ω ⊲ 𝐾 [𝑐𝑎𝑙𝑙 foo 𝑣]
(Call 𝑐 foo 𝑣;Ω.𝑡)
−−−−−−−−−−−−−→ectx Ω [¬Ω.𝑡 for 𝑡]

[
(𝐾 ; foo),Ω.𝐾 for 𝐾

]
⊲ 𝑒 [𝑣 for 𝑥]

The environmental semantics is mostly straightforward. In Rules 𝑒 − ret and 𝑒 − call − notsame,

the judgement Ω.𝜉 ⊢ foo : Ω.𝑡 checks whether foo is a component-level name by looking it up

in the list of component-level names 𝜉 and emits the appropriate transfer tag, i.e., either ! or ?.

Additional rules that are left out ensure that, e.g., when calling the main function, the event Start is

emitted, which is a design choice this paper does for convenience when reasoning about call-chains.

Note that the End 𝑣 event is not emitted if the program crashes.

The top-level execution ⟨ Ξctx;Ξcomp⟩
𝑎
=⇒ 𝑟 constructs an initial state Ω by linking Ξctx and Ξctx

and then starts execution by calling the main function. The trace 𝑎 emitted during that execution

serves as abstraction of the behavior of the program enabling the use of Definitions 2.1 and 2.2.

5.2 Ltms: A Temporal but Not Spatial Memory Safe Language
Ltms uses the same syntax as presented earlier (Section 5) without extensions to the term level. But,

Ltms is statically typed, where the type system is inspired by 𝐿3 [Morrisett et al. 2005; Scherer et al.

2018]. The type system of Ltms exhibits the property that every well-typed Ltms program satisfies

TMS (Theorem 5.1). The proof of this theorem relies on a projection Proj
Ltms (𝛿, a) = 𝑎 from Ltms

events to specification events 𝑎, because the properties defined earlier (Section 3.1) are defined in

15

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

the specification trace model. Hereby, the map 𝛿 (l) = 𝑙 maps an Ltms location to a location 𝑙 of the

specification trace model.

Proj
Ltms (𝛿, a) = 𝑎 „Project an Ltms event a to a specification event 𝑎.”

(Ltms-filter-context)

ab ≠

Proj
Ltms (𝛿, (ab; ctx;𝜎) = 𝜀)

(Ltms-filter-abort)

Proj
Ltms (𝛿,) =

(Ltms-filter-start)

Proj
Ltms (𝛿, (Start; comp)) = 𝜀

(Ltms-filter-alloc)

𝛿 (l) = 𝑙 n = 𝑛

Proj
Ltms (𝛿, (Alloc l n; comp)) = (Alloc 𝑙 𝑛; comp;�)

Most rules of the projection Proj
Ltms (𝛿, a) are left out since, for the most part, it does the expected,

e.g., Proj
Ltms (𝛿,Dealloc l; comp;𝜎) = Dealloc 𝛿 (𝑙); comp;𝜎 . But, it also filters any action that a

context does as well as the interaction events, since these are irrelevant for component-level TMS.

Theorem 5.1 (Ltms-programs are TMS). For any Ξcomp, ⊢𝑅 Ξcomp : tms

5.3 L: A Memory-Unsafe Language

(Expressions) e ::= · · · | x is h | e has 𝜏

L extends the syntax presented earlier (Section 5.1) with dynamic typechecks e has 𝜏 and a way

to inspect poison tags x is h in the metadata of pointers. For valid pointers (□) bound to variable

x, the check x is h yields 1. If the array bound to x was allocated, i.e., has been poisoned (h), the

check x is h evaluates to 0.
(𝑒 − x has Nt)

Ω ⊲ x has Nt
𝜀−→𝑝 Ω ⊲ 1

(𝑒 − n has Nt)

Ω ⊲ n has Nt
𝜀−→𝑝 Ω ⊲ 0

Dynamic typechecks e has 𝜏 match on e and evaluate to 0 if the term is of type 𝜏 and 1 otherwise.

The projection Proj
L (𝛿, a) is equal to Proj

Ltms (𝛿, a).

5.4 Lms: Another Memory-Unsafe Language
To enhance readablity, this paper uses Lms, despite it being exactly equal to L (Section 5.3). The

projection Proj
Lms (𝛿, a) is also exactly equal to Proj

L (𝛿, a).

5.5 Lscct: A Memory-Unsafe Language with a Data Independent Timing Mode

(Expressions) e ::= n𝜎 | · · · | let x𝜎=e1 in e2 | · · · | wrdoit e | rddoit x in e

(States) Ω ::= (Ψ; t; n; Φ)
Lscct extends Lms (Section 5.4) with a way to write to a model specific register that controls a data

(operand) independent timing mode, a feature that is present in both Arm [Arm 2020, p. 543] and

Intel [Intel 2023, p. 80] processors. To this end, states are extended with the value of the register,

which is initially set to be not active. If the register is marked active, the intuition is that no secrets

can appear on specification traces. If the register is marked inactive, secrets may appear on traces.

For the other languages seen earlier, the mode is intuitively always-on, i.e., the mode of execution

always uses data independent timing. The language also adds user-annotations to values and

variables to know their secrecy 𝜎 , which is either high � or low �. Security tags 𝜎 are on the usual

secrecy lattice, where � ≤ 𝜎 and 𝜎 ≤ �.

16

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Secure Composition of Robust and Optimising Compilers POPL ’24, January 17-19, 2024, London, UK

(Pre-Events) ab ::= · · · | Ĝet l v | Ŝet l v v′ | Branch n | Binop n

To prevent secrets from leaking but still enable reasoning about memory safety, Lscct extends
pre-events with Ĝet l v and Ŝet l v. These indicate reads from and writes to memory without

leaking secret information involved in the access. Moreover, the language extends pre-events with

Branch n and Binop n that are emitted when evaluating a branch or certain binary expressions, such

as division, respectively, whenever the data independent timing mode is inactive. The following

rules demonstrate how this is handled semantically.

(𝑒 − ⊕ − noleak)
m ≠ 0 n3 = n1 ⊕ n2
𝜎 ′′ ≤ 𝜎 𝜎 ′′ ≤ 𝜎 ′

Ψ; t; m; Φ ⊲ n𝜎1⊕n𝜎
′

2
𝜀−→𝑝 Ψ; t; m; Φ ⊲ n𝜎

′′
3

(𝑒 − wrdoit)

Ψ; t; m; Φ ⊲ wrdoit n𝜎
𝜀−→𝑝 Ψ; t; n; Φ ⊲ n𝜎

(𝑒 − ifz − true − leak)

Ψ; t; 0; Φ ⊲ ifz 0𝜎 then e1 else e2
Branch 0;t;𝜎−−−−−−−−−→𝑝 Ψ; t; 0; Φ ⊲ e2

The evaluation steps are amended to propagate the security-tag annotations 𝜎 . When the data

independent timing mode is active, pre-events Branch n and Binop n are emitted for conditionals

and binary operations, respectively.

Proj
Lscct (𝛿, a) = 𝑎 „Project an Lscct event a to a specification event 𝑎.”

(Lscct-filter-context)
ab ≠

Proj
Lscct (𝛿, (ab; ctx;𝜎) = 𝜀)

(Lscct-filter-ĝet)
𝛿 (l) = 𝑙 n = 𝑛

Proj
Lscct

(
𝛿, (Ĝet l n; comp;𝜎)

)
= (Get 𝑙 𝑛; comp;�)

(Lscct-filter-get)
𝛿 (l) = 𝑙 n = 𝑛

Proj
Lscct (𝛿, (Get l n; comp;𝜎)) = (Get 𝑙 𝑛; comp;𝜎)

The projection to the specification trace model is mostly straightforward and similar to the others,

e.g., Section 6.1. However, for events containing the pre-events Ĝet and Ŝet, the projection always

translates the security-tag 𝜎 to �, regardless of its actual value, as seen in Rule Lscct-filter-ĝet. The
pre-events themselves still translate to just Get and Set, respectively. With this technical setup, the

information whether a read or write happened on a secret value is not hidden by the semantics,

e.g., by emitting 𝜀, but when projecting to specification events. This allows flexibility: The trace

can be checked to satisfy different properties, such as, in this case, TMS, SMS, sCCT, and their

combined versions. Example 5.2 illustrates the differences of Lscct compared to the other languages.

Example 5.2 (Lscct with and without data independent timing). Consider again the context pre-

sented in Example 3.8, where everything is marked with a security tag of high �. The following

table shows parts of the execution trace, read from top to bottom, in the left column (Active) with
and in the right column (Inactive) without data independent timing. The left side of the table (Lscct),
i.e., the two columns on the left, describes the execution trace of the program, while the right

side of the table (𝑆𝑝𝑒𝑐), i.e., the two columns on the right, describes the respective projections

Proj
Lscct (𝛿, a) to the specification trace model.

17

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

Lscct 𝑆𝑝𝑒𝑐

𝐴𝑐𝑡𝑖𝑣𝑒 | 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 | 𝐴𝑐𝑡𝑖𝑣𝑒 | 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒

Alloc lx 12; comp;� | Alloc lx 12; comp;� | Alloc 𝑙𝑥 12; comp;� | Alloc 𝑙𝑥 12; comp;�

Alloc ly 12; comp;� | Alloc ly 12; comp;� | Alloc 𝑙𝑦 12; comp;� | Alloc 𝑙𝑥 12; comp;�

Ĝet lx 0; comp; � | Get lx 0; comp;� | Use 𝑙𝑥 0; comp; � | Use 𝑙𝑥 0; comp;�

𝜀 | Branch 0; comp;� | 𝜀 | Branch 0; comp;�

Ĝet lx 0; comp; � | Get lx 0; comp;� | Use 𝑙𝑥 0; comp; � | Use 𝑙𝑥 0; comp;�

Ŝet ly 0 ′H′; comp; � | Set ly 0 ′H′; comp;� | Use 𝑙𝑦 0; comp; � | Use 𝑙𝑦 0; comp;�

Ĝet lx 1; comp; � | Get lx 1; comp;� | Use 𝑙𝑥 1; comp; � | Use 𝑙𝑥 1; comp;�

𝜀 | Branch 0; comp;� | 𝜀 | Branch 0; comp;�

.

.

. |
.
.
. |

.

.

. |
.
.
.

Ĝet lx 12; comp; � | Get lx 12; comp;� | Use 𝑙𝑥 12; comp; � | Use 𝑙𝑥 12; comp;�

𝜀 | Branch 1; comp;� | 𝜀 | Branch 1; comp;�

Dealloc ly; comp;� | Dealloc ly; comp;� | Dealloc 𝑙𝑦 ; comp;� | Dealloc 𝑙𝑦 ; comp;�

Ĝet ly 6; comp; � | Get ly 6; comp;� | Use 𝑙𝑦 6; comp; � | Use 𝑙𝑦 6; comp;�

When the data independent timing mode is off, the execution yields events in similar fashion to

before (Sections 5.2 to 5.4). But, if it is turned on, then the branching event does not fire anymore

and both reading and writing to memory gets ultimately translated to a specification trace with

no exposed secrets .

6 CASE STUDY: COMPOSING SECURE COMPILER PASSES AND OPTIMISATIONS
This section defines several secure compilers, each of which robustly preserves a different property

of interest as depicted in Figure 3. The section demonstrates the power of the framework (Sections 3

Ltms L Lms

Lms

Lms

Lms
LscctTMS

Theorem 6.1

SMS

Theorem 6.3
D
C
E

T
h
e
o
rem

6
.5

C
F

T
h
e
o
re
m
6
.6

C
F

T
h
eo
re
m
6.
6

D
C
E

T
h
eo
rem

6.5

sCCT

Theorem 6.8

Section 6.1 Section 6.2 Section 6.3 Section 6.4

MS

Theorem 6.4

MS

Theorem 6.7

MS+sC
CT

Theo
rem

6.9

Fig. 3. Visualisation of the optimising compilation pipeline that attains a combination of MS and CCT. Vertices
in the graph are the programming languages from earlier sections (Section 5). All edges are secure compilers,
but dotted edges use the presented framework (Section 4) and strikethrough edges classic proof techniques.
The dashed lines partition the graph into the sections where the respective theorems are presented.

and 4) by composing these compilers for a secure and optimising compilation chain that robustly

preserves MS+sCCT. The first step in this chain is the compiler from Ltms to L that robustly

preserves just TMS (Theorem 6.1). From here, an instrumentation from L to Lms ensures that no

out-of-bounds accesses can happen and, thus, programs at this point attain SMS (Theorem 6.3).

Since these properties compose into MS, composing these passes yields a compiler that robustly

18

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Secure Composition of Robust and Optimising Compilers POPL ’24, January 17-19, 2024, London, UK

preserves MS (Theorem 6.4). At this stage, the section presents two optimising translations, namely

CF and DCE, each of which robustly preserves MS (Theorems 6.5 and 6.6). These translations can be

freely ordered in the compilation chain without compromising memory safety (Theorem 6.7). The

last step of the chain ensures that code stays sCCT (Theorem 6.8) when lowered from Lms to Lscct.
The final result is that the whole compilation chain robustly preserves MS+sCCT (Theorem 6.9).

6.1 Robust Temporal Memory Safety Preservation
This subsection defines a secure compiler from Ltms to L. To this end, the compiler needs to ensure

that when execution switches from context to component, the type signatures are respected. It can

do so by inserting dynamic typechecks prior to entering the body of a function belonging to the

component.

𝛾
Ltms

L (x) = x

𝛾
Ltms

L (n) = n

𝛾
Ltms

L (e1⊕e2) =
[
𝛾
Ltms

L (e1)
]
⊕
[
𝛾
Ltms

L (e2)
]

𝛾
Ltms

L (x[e]) = x[
[
𝛾
Ltms

L (e)
]
]

𝛾
Ltms

L (delete x) = delete
[
𝛾
Ltms

L (x)
]

𝛾
Ltms

L (fn g x : Nt → 𝜏e := e) = fn g x := ifz x has Nt then
[
𝛾
Ltms

L (e)
]

else abort()

Since L has no static typechecks, it could happen that a bogus context Ξctx invokes a callable

object accepting a Nt with ⟨17;29⟩. By inserting the check, the compiler ensures that execution

does not proceed in such cases. The compiler does not insert other checks and proceeds as the

identity function (which in this paper amounts to a simple re-colouring of Ltms to L expressions).

Compiling the strncpy function from Section 1 with 𝛾
Ltms

L , the compiler would in this case ensure

that the arguments that are evaluated in the compiled strncpy are valid.

Theorem 6.1 (Compiler 𝛾
Ltms

L is secure with respect to TMS). ⊢ 𝛾Ltms

L : tms

6.1.1 Proving Robust Safety Property Preservation. We illustrate the proof of Theorem 6.1 since the

other secure compilation proofs of this paper follow the same approach. Unfolding the theorem

statement yields the following assumptions: for any 𝜋 ∈ ⌈tms⌉5, a, r, and component Ξcomp, we

have that ⊢𝑅 Ξcomp : 𝜋 and ⟨ Ξctx;𝛾
Ltms

L (Ξcomp)⟩
a
=⇒ r, where Ξctx is arbitrary. The proof obligation

is Proj
L (𝛿, a) ∈ 𝜋 , i.e., the specification trace associated to a satisfies the property 𝜋 . A way to

show this is to relate trace a to some Ltms trace a (which already satisfies the property as per

the assumptions). The assumptions already contain a target execution associated to this trace,

so the task is to find an associated Ltms execution that yields a. The trace a is split into different

parts, as commonly done in secure compilation works [Abate et al. 2018; El-Korashy et al. 2021],

where each part contains the events that either the context or the component does, but not both.

Because of this, all such trace segments are „well-bracketed” in the sense that they start with either

Start, Call ! foo v, or Ret ! v and end with either End v, Ret ? v, or Call ? foo v. In the following,

the former is referred to as a context segment, since these executions happen in Ξctx, and the latter

is referred to as a component segment, since these executions happen in 𝛾
Ltms

L (Ξcomp). Figure 4
visualises this division for a program execution with one call from context to component and how

5 ⌈ ·⌉ lifts the property to a hyperproperty by applying the powerset operation [Clarkson and Schneider 2008].

19

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

the target execution is related to a source execution. In the figure, the green dashed lines encompass

the component segments while the orange boxes contain the actual context switches from context to

component or vice versa. From a technical perspective, as typically done in compilation proofs, the

proof requires some setup to maintain a relation between Ω and Ω . Two cross-language relations

make this precise: (i)⊸𝛿 relates states that are involved in a context segment, allowing the target

execution to perform internal calls, and (ii) ≈𝛿 relates states that are involved in a component

segment, where both states need to agree exactly, i.e., the memory and the control flow states are

required to contain the same information. The relations are indexed with 𝛿 , which is an injective

mapping from Ltms locations l to L locations l. Note that the relations ⊸𝛿 and ≈𝛿 swap when

context switching.

∅ ⊲ call main 0 Ω1 ⊲ e1 Ωw1 ⊲ ew1 Ωp ⊲ ep Ωw2 ⊲ ew2 Ω2 ⊲ e2

∅ ⊲ call main 0 Ω1 ⊲ e1 Ωw1 ⊲ ew1 Ωp ⊲ ep Ωw2 ⊲ ew2 Ω2 ⊲ e2

⊸
∅

⊸
𝛿
1

≈
𝛿
𝑝

⊸
𝛿
2

≈
𝛿
𝑤
1

⊸
𝛿
𝑤
2

≈
𝛿𝑤
1⊸

𝛿
1 ≈

𝛿
𝑝

⊸
𝛿 𝑤
2

𝑎1−→∗
ctx

𝑎𝑐−−→ctx

𝑎𝑝−−→∗
ctx

𝑎𝑟−−→ctx

𝑎2−→∗
ctx

−→∗
ctx

−−→∗
ctx

−−→∗
ctx

−−→∗
ctx

−→∗
ctx

Backtranslation Wrapper

Compiler Correctness

Fig. 4. Proof diagram for Theorem 6.1 depicting the general structure of robust preservation proofs. Nodes in
the graph represent runtime states. Vertical lines indicate cross language relations, while horizontal ones
are execution steps. The green dashed trapezoid encompasses the component segment, while the orange
dotted rectangles entail the context switches. L traces are omitted for readability. Ltms trace segments ac and
ar describe the events that happen at the boundaries, i.e., during a context switch. ap is the behavior of the
component and the traces a1 and a2 describe the context.

So far, the paper explained how to relate an Ltms execution with a L execution. The next question

is therefore how to build the corresponding Ltms execution. This is done using a standard secure

compilation proof technique called trace-based backtranslation [Abate et al. 2019; El-Korashy et al.

2021; Patrignani and Garg 2021], which can be used to build a context Ξctx that behaves similar to

Ξctx. For context segments of the trace a it is also necessary to show that the execution behaves

similarily, i.e., the context obtained from the backtranslation generates trace a. For component

segments of the trace, the relatedness of states and traces follows from a compiler correctness

argument. These two arguments yield the source execution ⟨ Ξctx;Ξcomp⟩
a
=⇒ r.

The proof now works as follows. Given that Proj
L (𝛿, a) = Proj

Ltms (𝛿, a), the proof goal changes
from Proj

L (𝛿, a) ∈ 𝜋 to Proj
Ltms (𝛿, a) ∈ 𝜋 . This follows by specializing the robust satisfaction

assumption ⊢𝑅 Ξcomp : 𝜋 to use the context Ξctx, which is obtained from the backtranslation, and

to use the source execution ⟨ Ξctx;Ξcomp⟩
a
=⇒ r.

20

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Secure Composition of Robust and Optimising Compilers POPL ’24, January 17-19, 2024, London, UK

6.2 Robust (Spatial) Memory Safety Preservation

𝛾L
Lms

(new x [e1]e2) = let xSIZE=𝛾L
Lms

(e1) in new x [xSIZE]𝛾L
Lms

(e2)
𝛾L
Lms

(x[e]) = let xn=𝛾L
Lms

(e) in ifz 0 ≤ xn < xSIZE then x [xn] else abort ()
𝛾L
Lms

(x[e1] ←e2) = let xn=𝛾L
Lms

(e1) in ifz 0 ≤ xn < xSIZE then x [xn] ←𝛾L
Lms

(e2) else abort ()

The compiler 𝛾L
Lms

only inserts bounds-checks whenever reading from or writing to memory in

order to enforce SMS. For passing pointers, it has to pass them with their size information as well.

To this end, the compiler introduces another, fresh identifier xSIZE for each allocation that binds x
to keep track of the allocation size.

Example 6.2 (Instrumented strncpy). Consider again strncpy, but instrumented for SMS:

void strncpy(size_t n, size_t dst_size , char *dst ,

size_t src_size , char *src) {

for(size_t i = 0; i < src_size && src[i] != '\0' && i < n; ++i) {

if(i < src_size && i < dst_size) {

dst[i] = src[i];

}

}

}

When calling this in similar fashion to Example 3.10, the event Use 𝑙𝑥 2; comp;� would not be

emitted during execution, since the bounds check prevents the condition src[i] != ’\0’ from
executing.

Theorem 6.3 (Compiler 𝛾L
Lms

is secure with respect to SMS). ⊢ 𝛾L
Lms

: sms

Theorem 6.4 states that the composition of 𝛾
Ltms

L and 𝛾L
Lms

is secure with respect to MS and follows

from Theorems 6.1 and 6.3 using Theorem 4.2.

Theorem 6.4 (Compiler 𝛾
Ltms

L ◦ 𝛾L
Lms

is secure with respect to MS). ⊢ 𝛾Ltms

L ◦ 𝛾L
Lms

: ms

Proof. From Theorem 6.1 (Compiler 𝛾
Ltms

L is secure with respect to TMS) it follows that for any

Ltms program p, it compiles to an L program p that robustly satisfies TMS. Note that p robustly

satisfies TMS by the properties of the typesystem of Ltms. Then, Theorem 6.3 (Compiler 𝛾L
Lms

is

secure with respect to SMS) demonstrates that, assuming p robustly satisfies SMS, the program

p compiles to an Lms program p that also robustly satisfies SMS. From Theorem 6.4 (Compiler

𝛾
Ltms

L ◦ 𝛾L
Lms

is secure with respect to MS) it follows that p compiles to p that robustly satisfies MS,

since MS is the intersection of TMS and SMS. □

21

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

6.3 Optimising Compilers

𝛾𝐷𝐶𝐸
Lms

Lms

(ifz true then e1 else e2) = 𝛾𝐷𝐶𝐸Lms

Lms

(e1)

𝛾𝐷𝐶𝐸
Lms

Lms

(ifz false then e1 else e2) = 𝛾𝐷𝐶𝐸Lms

Lms

(e2)

𝛾𝐷𝐶𝐸
Lms

Lms

(e1⊕e2) = 𝛾𝐷𝐶𝐸Lms

Lms

(e1)⊕𝛾𝐷𝐶𝐸Lms

Lms

(e2)

𝛾𝐶𝐹
Lms

Lms

(e) = mix(e, [·])

mix(x, 𝛾) = n if [n for x] ∈ 𝛾
mix(x, 𝛾) = x if [n for x] ∉ 𝛾

mix(n⊕m, 𝛾) = k if n⊕m = 𝑘

mix(let x=n in e, 𝛾) = mix(e, [x for n], 𝛾)
mix(x [e], 𝛾) = x [mix(e, 𝛾)]

mix(let x=e1 in e2, 𝛾) = let x= mix(e1, 𝛾) in mix(e2, 𝛾)
mix(ifz e1 then e2 else e3, 𝛾) = ifz mix(e1, 𝛾) then mix(e2, 𝛾) else mix(e3, 𝛾)

The two optimising compiler passes from Lms to Lms perform DCE and CF, respectively. The

DCE pass applies a naive rewrite rule on conditionals. For CF, the pass uses an auxiliary function

mix that does the actual work. It rewrites constant binary operations, e.g., 17 − 1 to 16, and replaces
variables that are assigned to constants with their constant, e.g., let x=7 in x to 7 . Both passes are

secure with respect to MS. The proof for either is relatively simple, because both DCE and CF do

not change the way memory accesses happen. Moreover, since the input and output languages to

these compilers are the same, attacker contexts do not have more power in the target language

than in the source.

Theorem 6.5 (Compiler 𝛾𝐷𝐶𝐸
Lms

Lms

is secure with respect to MS). ⊢ 𝛾𝐷𝐶𝐸Lms

Lms

: ms

Theorem 6.6 (Compiler 𝛾𝐶𝐹
Lms

Lms

is secure with respect to MS). ⊢ 𝛾𝐶𝐹 Lms

Lms

: ms

With both Theorems 6.5 and 6.6 it follows from Corollary 4.3 that the two passes can be inter-

changed arbitrarily:

Theorem 6.7 (Compilers 𝛾𝐶𝐹
Lms

Lms

◦ 𝛾𝐷𝐶𝐸Lms

Lms

and 𝛾𝐶𝐹
Lms

Lms

◦ 𝛾𝐷𝐶𝐸Lms

Lms

are secure with respect to

MS). ⊢ 𝛾𝐶𝐹 Lms

Lms

◦ 𝛾𝐷𝐶𝐸Lms

Lms

: ms and ⊢ 𝛾𝐷𝐶𝐸Lms

Lms

◦ 𝛾𝐶𝐹 Lms

Lms

: ms.

6.4 Robust Strict Cryptographic Constant Time Preservation

𝛾
Lms

Lscct (fn g x := e) = fn g x := wrdoit 1;𝛾Lms

Lscct (e)

𝛾
Lms

Lscct (call g e) = call g 𝛾Lms

Lscct (e); wrdoit1

𝛾
Lms

Lscct (e1⊕e2) = 𝛾
Lms

Lsccte1⊕𝛾
Lms

Lsccte2

Given the fact that Lscct provides a CCT-mode that can be turned on or off, the compiler inserts

wrapper code for function bodies to ensure that execution in the component always happen in this

CCT-mode. The context can overwrite the flag and exit the mode, but upon invoking a function

22

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Secure Composition of Robust and Optimising Compilers POPL ’24, January 17-19, 2024, London, UK

that is part of the component, the flag would be set again. Because of this, the compiler is secure

with respect to sCCT, similarly proven as in Section 6.1.

Theorem 6.8 (Compiler 𝛾
Lms

Lscct is secure with respect to sCCT). ⊢ 𝛾Lms

Lscct : scct

6.5 Robust Preservation of Intersection of Memory Safety and Strict Cryptographic
Constant Time

Let 𝛾
Ltms

Lscct be the compiler that is the composition of 𝛾
Ltms

L , 𝛾L
Lms

, 𝛾𝐶𝐹
Lms

Lms

, 𝛾𝐷𝐶𝐸
Lms

Lms

, and 𝛾
Lms

Lscct , then the

following theorem holds.

Theorem 6.9 (Compiler 𝛾
Ltms

Lscct is secure with respect to sCCT). ⊢ 𝛾Ltms

Lscct : ms∩ scct

Proof. From Theorem 6.4 (Compiler 𝛾
Ltms

L ◦ 𝛾L
Lms

is secure with respect to MS), we have that

any Ltms program p compiles into a Lms program p that robustly satisfies MS. Then, from Theo-

rem 6.7 (Compilers 𝛾𝐶𝐹
Lms

Lms

◦ 𝛾𝐷𝐶𝐸Lms

Lms

and 𝛾𝐶𝐹
Lms

Lms

◦ 𝛾𝐷𝐶𝐸Lms

Lms

are secure with respect to MS) we have

that p gets optimised to a program p′ that is also MS, where the order of optimisations does not

matter for p′ to be MS. Assuming p′ robustly satisfies sCCT, by Theorem 6.8 (Compiler 𝛾
Lms

Lscct is

secure with respect to sCCT) it compiles to an Lscct program p that robustly satisfies sCCT as well.

Finally, from Theorem 4.2 (Sequential Composition of Secure Compilers) it follows that, given p
robustly satisfies sCCT and MS, p also robustly satisfies sCCT and MS. □

7 RELATEDWORK
This section discusses work on robust compilation (Section 7.1) and on other secure compilation

criteria (Section 7.2). Since the case study of Sections 5 and 6 implements measures for preserving

MS and CCT, this section then presents relevant related work as well (Sections 7.3 and 7.4).

7.1 Secure Compilation as Robust Preservation
The robust preservation of properties as a compiler-level criterion has been analyzed exten-

sively [Abate et al. 2021a, 2019; Patrignani et al. 2019; Patrignani and Garg 2021] and thus we build

on that framework. No existing work is concerned with composing robustly safe compilers. These

works consider languages with different trace models and our technical setup can be adapted to

that as long as security properties and their monitors are still defined on the same trace model. The

work relating robust preservation with universal composability [Patrignani et al. 2022] is closest

to what this paper presents. The authors demonstrate a similar compositionalty theorem to what

is presented here (Section 4) but use it in the context of protocols. They do not demonstrate the

scalability of the approach. Moreover, they are missing the upper and lower compositions.

7.2 Other Secure Compilation Criteria
While this paper focuses on the robust preservation framework [Abate et al. 2019], other secure

compilation criteria exist. The survey on formal approaches to secure compilation [Patrignani

et al. 2019] discusses a broad spectrum already, while this section presents a very high-level

overview. Fully abstract compilation [Abadi 1999b] states that a compiler should preserve and

reflect observational equivalence between source and target programs. It was shown [Abate et al.

2021b] that fully abstract compilers robustly preserve program properties that are either trivial or

meaningless. As a mitigation for this, the authors presented a categorical approach based on maps

of distributive laws [Watanabe 2002], which they call many maps of distributive laws. Maps of

distributive laws have been investigated before as a possible secure compilation criterion [Tsampas

et al. 2020]. Other approaches are extensions of the compiler correctness criterion as discussed

in other work [Patterson and Ahmed 2019] or the introduction of opaque observations [Vu et al.

23

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

2021] to reconcile compiler optimisations with security. Note that this work also presents secure

compilers that are optimising, but contrary to the other [Vu et al. 2021], provides a formal account

of these in the robust preservation framework.

7.3 Memory Safety Mechanisms
Different mechanisms for enforcing memory safety exist that also consider the secure compilation

domain, i.e., have an active attacker model. For example, the „pointers as capabilities” principle

represents pointers as machine-level capabilities [El-Korashy et al. 2021], which behave in a similar

fashion to capabilities by means of linear typing [Morrisett et al. 2005]. The approach of this paper

also uses linear typing, but differs from 𝐿3 [Morrisett et al. 2005] in the way that functions are not

first-class. Moreover, this paper considers an active attacker, while the work on 𝐿3 only discusses

whole programs and, thus, has no active attacker model. The instrumentation to ensure memory

safety that this paper presents is inspired by Softbounds [Nagarakatte et al. 2009]. That work inserts

bounds-checks in front of pointer-dereferences and, for this to work, inserts meta-data information

on pointer creation. Softbounds also works in a more advanced setting with structured fields

accesses and also introduces a table-lookup for pointers that are stored in memory. This paper only

considers arrays of primitive data, i.e., there are no pointers to pointers or structures. Several other

approaches to memory-safety exist in literature, specifically as compiler instrumentations [Akritidis

et al. 2009; Dhumbumroong and Piromsopa 2020; Jung et al. 2021; Nam et al. 2019; Shankaranarayana

et al. 2023; Younan et al. 2010; Zhou et al. 2023], hardware-extensions [Chen et al. 2023; Kim et al.

2023; Kwon et al. 2013; Saileshwar et al. 2022], or programming language extensions [Benoit and

Jacobs 2019; Elliott et al. 2018, 2015; Jim et al. 2002; Li et al. 2022; Weis et al. 2019; West and Wong

2005]. What differentiates this work from them is that this work uses known, compiler-based

approaches to ensure memory-safety as a means to investigate secure compiler compositions. This

paper does not provide efficient memory-safety, but serves as a theoretical foundation for the secure

compilation domain.

To extend the languages in this paper with a less restricted form of pointer arithmetic, the region

coloring memory safety monitor presented in earlier work [Michael et al. 2023] can be used. The

work presenting this monitor provides an approach for the robust preservation of memory safety

compiling from C to WASM. However, they do not discuss composition of secure compilers but

rather investigate an instance of a secure compiler.

7.4 Cryptographic Constant Time Mechanisms
The approach to preserving cryptographic constant time in this paper is high-level, where a

programming language exposes a way to switch the semantics to a data (operand) independent

timing mode. Since identifiers in Lscct are annotated with a secrecy tag, this approach is similar to

others with information flow control. For example, Vale [Bond et al. 2017] uses Dafny to ensure

constant-time assembly code, while Jasmin [Almeida et al. 2017] makes use of the Coq proof

assistant to reject non-constant-time programs. CT-Wasm [Watt et al. 2019] enforces constant-

timeness by means of a type system. Different to the approach of this paper, these approaches

necessitate that the programmer writes CCT code. An approach to allow programmers to write

more high-level code is CryptOpt [Kuepper et al. 2023], which generates efficient target-code

by means of a randomised search. This paper abstracts over concrete mitigation strategies and

simply assumes that there is a flag to switch to a cryptographic-constant time execution mode. This

can be realised by employing the FaCT [Cauligi et al. 2019] compiler, which translates common

non-constant time code patterns to be constant-time, and the data (object) independent timing

execution mode of modern processors.

24

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Secure Composition of Robust and Optimising Compilers POPL ’24, January 17-19, 2024, London, UK

8 CONCLUSION
This paper tackled the problem of understanding what kind of security properties does a secure

compiler preserve, when said compiler is the combination of compiler passes that preserve possibly

different security properties. For this, this paper first formalised security properties of interest and

their composition. Then, it proved that composing secure compilers that preserve certain properties

results in a secure compiler that preserves the composition of these properties. Finally, this paper

defines a multi-pass compiler and proves that it preserves MS+sCCT. Crucially, this paper derives

the security of the multi-pass compiler from the composition of the security properties preserved

by its individual passes, which include security-preserving as well as optimisation passes.

REFERENCES
Martín Abadi. 1999a. Protection in Programming-Language Translations. Springer Berlin Heidelberg, Berlin, Heidelberg,

19–34. https://doi.org/10.1007/3-540-48749-2_2

Martín Abadi. 1999b. Protection in Programming-Language Translations. Springer Berlin Heidelberg, Berlin, Heidelberg,

19–34. https://doi.org/10.1007/3-540-48749-2_2

Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco, Ana Nora Evans, Guglielmo Fachini, Catalin Hritcu, Théo

Laurent, Benjamin C. Pierce, Marco Stronati, and Andrew Tolmach. 2018. When Good Components Go Bad: Formally

Secure Compilation Despite Dynamic Compromise. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (Toronto, Canada) (CCS ’18). Association for Computing Machinery, New York, NY, USA,

1351–1368. https://doi.org/10.1145/3243734.3243745

Carmine Abate, Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Deepak Garg, Cătălin Hriţcu, Marco Patrignani, Éric Tanter,

and Jérémy Thibault. 2021a. An Extended Account of Trace-Relating Compiler Correctness and Secure Compilation.

ACM Trans. Program. Lang. Syst. 43, 4, Article 14 (nov 2021), 48 pages. https://doi.org/10.1145/3460860

Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco Patrignani, and Jérémy Thibault. 2019. Journey Beyond

Full Abstraction: Exploring Robust Property Preservation for Secure Compilation. In 2019 IEEE 32nd Computer Security
Foundations Symposium (CSF). 256–25615. https://doi.org/10.1109/CSF.2019.00025

Carmine Abate, Matteo Busi, and Stelios Tsampas. 2021b. Fully Abstract and Robust Compilation. In Programming Languages
and Systems, Hakjoo Oh (Ed.). Springer International Publishing, Cham, 83–101.

Amal Ahmed and Matthias Blume. 2011. An Equivalence-Preserving CPS Translation via Multi-Language Semantics. In

Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming (Tokyo, Japan) (ICFP ’11).
Association for Computing Machinery, New York, NY, USA, 431–444. https://doi.org/10.1145/2034773.2034830

Amal Ahmed, Deepak Garg, Catalin Hritcu, and Frank Piessens. 2018. Secure Compilation (Dagstuhl Seminar 18201).

Dagstuhl Reports 8, 5 (2018), 1–30. https://doi.org/10.4230/DagRep.8.5.1

Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy Bounds Checking: An Efficient and

Backwards-Compatible Defense against out-of-Bounds Errors. In Proceedings of the 18th Conference on USENIX Security
Symposium (Montreal, Canada) (SSYM’09). USENIX Association, USA, 51–66.

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira,

Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryptography.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 1807–1823. https://doi.org/10.1145/3133956.3134078

Arm. 2020. Arm®A-profile Architecture Registers. Accessed: 2023-06-09.
Arm. 2022. Morello for A-profile Architecture. Accessed: 2023-06-10.
Arthur Azevedo de Amorim, Cătălin Hriţcu, and Benjamin C. Pierce. 2018. The Meaning of Memory Safety. In Principles of

Security and Trust, Lujo Bauer and Ralf Küsters (Eds.). Springer International Publishing, Cham, 79–105.

Michael Backes, Cătălin Hriţcu, and Matteo Maffei. 2014. Union, intersection and refinement types and reasoning about

type disjointness for secure protocol implementations. Journal of Computer Security 22, 2 (2014), 301–353. https:

//doi.org/10.3233/jcs-130493

Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Secure Compilation of Side-Channel Countermeasures: The

Case of Cryptographic “Constant-Time”. In 2018 IEEE 31st Computer Security Foundations Symposium (CSF). 328–343.
https://doi.org/10.1109/CSF.2018.00031

Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. 2011. Refinement

Types for Secure Implementations. ACM Trans. Program. Lang. Syst. 33, 2, Article 8 (feb 2011), 45 pages. https:

//doi.org/10.1145/1890028.1890031

Tuur Benoit and Bart Jacobs. 2019. Uniqueness Types for Efficient and Verifiable Aliasing-Free Embedded Systems

Programming. In International Conference on Integrated Formal Methods.

25

https://doi.org/10.1007/3-540-48749-2_2
https://doi.org/10.1007/3-540-48749-2_2
https://doi.org/10.1145/3243734.3243745
https://doi.org/10.1145/3460860
https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1145/2034773.2034830
https://doi.org/10.4230/DagRep.8.5.1
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.3233/jcs-130493
https://doi.org/10.3233/jcs-130493
https://doi.org/10.1109/CSF.2018.00031
https://doi.org/10.1145/1890028.1890031
https://doi.org/10.1145/1890028.1890031

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

BlockSec. 2021. CVE-2021-3564. Available from MITRE, CVE-ID CVE-2021-2564.. http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2021-2564

Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty,

and Laure Thompson. 2017. Vale: Verifying High-Performance Cryptographic Assembly Code. In 26th USENIX Security
Symposium (USENIX Security 17). USENIX Association, Vancouver, BC, 917–934. https://www.usenix.org/conference/

usenixsecurity17/technical-sessions/presentation/bond

William J. Bowman and Amal Ahmed. 2015. Noninterference for Free. SIGPLAN Not. 50, 9 (aug 2015), 101–113. https:

//doi.org/10.1145/2858949.2784733

Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. 2006. Universally Composable Security with Global Setup.

Cryptology ePrint Archive, Paper 2006/432. https://eprint.iacr.org/2006/432 https://eprint.iacr.org/2006/432.

Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby, John Renner, Benjamin Grégoire, Gilles

Barthe, Ranjit Jhala, and Deian Stefan. 2019. FaCT: A DSL for Timing-Sensitive Computation. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019).
Association for Computing Machinery, New York, NY, USA, 174–189. https://doi.org/10.1145/3314221.3314605

Dongwei Chen, Dong Tong, Chun Yang, Jiangfang Yi, and Xu Cheng. 2023. FlexPointer: Fast Address Translation Based

on Range TLB and Tagged Pointers. ACM Trans. Archit. Code Optim. 20, 2, Article 30 (mar 2023), 24 pages. https:

//doi.org/10.1145/3579854

Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In 2008 21st IEEE Computer Security Foundations
Symposium. 51–65. https://doi.org/10.1109/CSF.2008.7

Cliff Click and Keith D. Cooper. 1995. Combining Analyses, Combining Optimizations. ACM Trans. Program. Lang. Syst. 17,
2 (mar 1995), 181–196. https://doi.org/10.1145/201059.201061

Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999. Optimizing for Reduced Code Space Using Genetic

Algorithms. In Proceedings of the ACM SIGPLAN 1999 Workshop on Languages, Compilers, and Tools for Embedded
Systems (Atlanta, Georgia, USA) (LCTES ’99). Association for Computing Machinery, New York, NY, USA, 1–9. https:

//doi.org/10.1145/314403.314414

Dominique Devriese, Marco Patrignani, and Frank Piessens. 2017a. Parametricity versus the Universal Type. Proc. ACM
Program. Lang. 2, POPL, Article 38 (dec 2017), 23 pages. https://doi.org/10.1145/3158126

Dominique Devriese, Marco Patrignani, Frank Piessens, and Steven Keuchel. 2017b. Modular, Fully-abstract Compilation by

Approximate Back-translation. Logical Methods in Computer Science Volume 13, Issue 4 (Oct. 2017). https://doi.org/10.

23638/LMCS-13(4:2)2017

Smith Dhumbumroong and Krerk Piromsopa. 2020. BoundWarden: Thread-enforced spatial memory safety through compile-

time transformations. Science of Computer Programming 198 (2020), 102519. https://doi.org/10.1016/j.scico.2020.102519

Akram El-Korashy, Stelios Tsampas, Marco Patrignani, Dominique Devriese, Deepak Garg, and Frank Piessens. 2021.

CapablePtrs: Securely Compiling Partial Programs Using the Pointers-as-Capabilities Principle. In 2021 IEEE 34th
Computer Security Foundations Symposium (CSF). 1–16. https://doi.org/10.1109/CSF51468.2021.00036

Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi. 2018. Checked C: Making C Safe by Extension. In

2018 IEEE Cybersecurity Development (SecDev). 53–60. https://doi.org/10.1109/SecDev.2018.00015

Trevor Elliott, Lee Pike, SimonWinwood, Patrick C. Hickey, James Bielman, Jamey Sharp, Eric L. Seidel, and John Launchbury.

2015. Guilt free ivory. Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell (2015).
Xaver Fabian, Marco Patrignani, and Marco Guarnieri. 2022. Automatic Detection of Speculative Execution Combinations.

In Proceedings of the 29th ACM Conference on Computer and Communications Security (CCS 2022). ACM.

Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. 2007. A Type Discipline for Authorization Policies. ACM Trans.
Program. Lang. Syst. 29, 5 (aug 2007), 25–es. https://doi.org/10.1145/1275497.1275500

Google. [n. d.]. Android Studio Webpage. https://developer.android.com/. Accessed: 2023-05-30.

Google. 2008. V8 Javascript Engine. https://v8.dev/blog/10-years. Accessed: 2023-05-30.

Andrew D. Gordon and Alan Jeffrey. 2003. Authenticity by Typing for Security Protocols. J. Comput. Secur. 11, 4 (jul 2003),
451–519.

Intel. 2023. Intel®64 and IA-32 Architectures Software Developer Manual. Acccessed: 2023-06-09.
Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and Yanling Wang. 2002. Cyclone: A

Safe Dialect of C. In USENIX Annual Technical Conference, General Track.
Tina Jung, Fabian Ritter, and Sebastian Hack. 2021. PICO: A Presburger In-Bounds Check Optimization for Compiler-

Based Memory Safety Instrumentations. ACM Trans. Archit. Code Optim. 18, 4, Article 45 (jul 2021), 27 pages. https:

//doi.org/10.1145/3460434

Andrew Kennedy. 2006. Securing the .NET programming model. Theoretical Computer Science 364, 3 (2006), 311–317.

https://doi.org/10.1016/j.tcs.2006.08.014 Applied Semantics.

Sungkeun Kim, Farabi Mahmud, Jiayi Huang, Pritam Majumder, Chia che Tsai, Abdullah Muzahid, and Eun Jung Kim. 2023.

WHISTLE: CPU Abstractions for Hardware and Software Memory Safety Invariants. IEEE Trans. Comput. 72 (2023),

26

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2564
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-2564
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://doi.org/10.1145/2858949.2784733
https://doi.org/10.1145/2858949.2784733
https://eprint.iacr.org/2006/432
https://eprint.iacr.org/2006/432
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3579854
https://doi.org/10.1145/3579854
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1145/201059.201061
https://doi.org/10.1145/314403.314414
https://doi.org/10.1145/314403.314414
https://doi.org/10.1145/3158126
https://doi.org/10.23638/LMCS-13(4:2)2017
https://doi.org/10.23638/LMCS-13(4:2)2017
https://doi.org/10.1016/j.scico.2020.102519
https://doi.org/10.1109/CSF51468.2021.00036
https://doi.org/10.1109/SecDev.2018.00015
https://doi.org/10.1145/1275497.1275500
https://developer.android.com/
https://v8.dev/blog/10-years
https://doi.org/10.1145/3460434
https://doi.org/10.1145/3460434
https://doi.org/10.1016/j.tcs.2006.08.014

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Secure Composition of Robust and Optimising Compilers POPL ’24, January 17-19, 2024, London, UK

811–825.

Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In Advances in
Cryptology — CRYPTO ’96, Neal Koblitz (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 104–113.

Joel Kuepper, Andres Erbsen, Jason Gross, Owen Conoly, Chuyue Sun, Samuel Tian, David Wu, Adam Chlipala, Chitchanok

Chuengsatiansup, Daniel Genkin, Markus Wagner, and Yuval Yarom. 2023. CryptOpt: Verified Compilation with

Randomized Program Search for Cryptographic Primitives. Proc. ACM Program. Lang. 7, PLDI, Article 158 (jun 2023),

25 pages. https://doi.org/10.1145/3591272

P.A. Kulkarni, D.B. Whalley, G.S. Tyson, and J.W. Davidson. 2006. Exhaustive optimization phase order space exploration. In

International Symposium on Code Generation and Optimization (CGO’06). 13 pp.–318. https://doi.org/10.1109/CGO.2006.15
Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight, and Andre DeHon. 2013. Low-Fat Pointers: Compact

Encoding and Efficient Gate-Level Implementation of Fat Pointers for Spatial Safety and Capability-Based Security. In

Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security (Berlin, Germany) (CCS ’13).
Association for Computing Machinery, New York, NY, USA, 721–732. https://doi.org/10.1145/2508859.2516713

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis and Transformation.

San Jose, CA, USA, 75–88.

Michael LeMay, Joydeep Rakshit, Sergej Deutsch, David M. Durham, Santosh Ghosh, Anant Nori, Jayesh Gaur, Andrew

Weiler, Salmin Sultana, Karanvir Grewal, and Sreenivas Subramoney. 2021. Cryptographic Capability Computing. In

MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture (Virtual Event, Greece) (MICRO ’21).
Association for Computing Machinery, New York, NY, USA, 253–267. https://doi.org/10.1145/3466752.3480076

Liyi Li, Yiyun Liu, Deena Postol, Leonidas Lampropoulos, David Van Horn, and Michael Hicks. 2022. A Formal Model of

Checked C. In 2022 IEEE 35th Computer Security Foundations Symposium (CSF). 49–63. https://doi.org/10.1109/CSF54842.

2022.9919657

Sergio Maffeis, Martín Abadi, Cédric Fournet, and Andy Gordon. 2008. Code-Carrying Authorization. In 13th European
Symposium on Research in Computer Security, MÃ¡laga, Spain, October 6-8, 2008. Proceedings (13th european symposium

on research in computer security, málaga, spain, october 6-8, 2008. proceedings ed.), Vol. 5283. Springer Berlin Heidelberg,

563–579. https://www.microsoft.com/en-us/research/publication/code-carrying-authorization/

N. Manjikian and T.S. Abdelrahman. 1997. Fusion of loops for parallelism and locality. IEEE Transactions on Parallel and
Distributed Systems 8, 2 (1997), 193–209. https://doi.org/10.1109/71.577265

D. McCullough. 1988. Noninterference and the Composability of Security Properties. In 2012 IEEE Symposium on Security
and Privacy. IEEE Computer Society, Los Alamitos, CA, USA, 177. https://doi.org/10.1109/SECPRI.1988.8110

Alexandra E. Michael, Anitha Gollamudi, Jay Bosamiya, Evan Johnson, Aidan Denlinger, Craig Disselkoen, Conrad Watt,

Bryan Parno, Marco Patrignani, Marco Vassena, and Deian Stefan. 2023. MSWasm: Soundly Enforcing Memory-Safe

Execution of Unsafe Code. Proc. ACM Program. Lang. 7, POPL, Article 15 (jan 2023), 30 pages. https://doi.org/10.1145/

3571208

Microsoft. 2010a. CVE-2010-2557. Available from MITRE, CVE-ID CVE-2010-2557.. http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2010-2557

Microsoft. 2010b. CVE-2011-0035. Available from MITRE, CVE-ID CVE-2011-0035.. http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2011-0035

Microsoft. 2010c. CVE-2011-0036. Available from MITRE, CVE-ID CVE-2011-0036.. http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2011-0036

Microsoft. 2015. CVE-2015-1770. Available from MITRE, CVE-ID CVE-2015-1770.. http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2015-1770

Greg Morrisett, Amal Ahmed, and Matthew Fluet. 2005. L3: A Linear Language with Locations. In Typed Lambda Calculi
and Applications, Paweł Urzyczyn (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 293–307.

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. 2009. SoftBound: Highly Compatible and

Complete Spatial Memory Safety for c. SIGPLAN Not. 44, 6 (jun 2009), 245–258. https://doi.org/10.1145/1543135.1542504

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. 2010. CETS: Compiler Enforced Temporal

Safety for C. SIGPLAN Not. 45, 8 (jun 2010), 31–40. https://doi.org/10.1145/1837855.1806657

Myoung Jin Nam, Periklis Akritidis, and David J Greaves. 2019. FRAMER: A Tagged-Pointer Capability System with Memory

Safety Applications. In Proceedings of the 35th Annual Computer Security Applications Conference (San Juan, Puerto Rico,

USA) (ACSAC ’19). Association for Computing Machinery, New York, NY, USA, 612–626. https://doi.org/10.1145/3359789.

3359799

George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, andWestleyWeimer. 2005. CCured: Type-Safe Retrofitting

of Legacy Software. ACM Trans. Program. Lang. Syst. 27, 3 (may 2005), 477–526. https://doi.org/10.1145/1065887.1065892

Marco Patrignani, Amal Ahmed, andDave Clarke. 2019. Formal Approaches to Secure Compilation: A Survey of Fully Abstract

Compilation and RelatedWork. ACM Comput. Surv. 51, 6, Article 125 (feb 2019), 36 pages. https://doi.org/10.1145/3280984

27

https://doi.org/10.1145/3591272
https://doi.org/10.1109/CGO.2006.15
https://doi.org/10.1145/2508859.2516713
https://doi.org/10.1145/3466752.3480076
https://doi.org/10.1109/CSF54842.2022.9919657
https://doi.org/10.1109/CSF54842.2022.9919657
https://www.microsoft.com/en-us/research/publication/code-carrying-authorization/
https://doi.org/10.1109/71.577265
https://doi.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1145/3571208
https://doi.org/10.1145/3571208
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2557
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2557
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0035
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0035
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0036
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0036
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1770
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1770
https://doi.org/10.1145/1543135.1542504
https://doi.org/10.1145/1837855.1806657
https://doi.org/10.1145/3359789.3359799
https://doi.org/10.1145/3359789.3359799
https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1145/3280984

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

Marco Patrignani and Deepak Garg. 2021. Robustly Safe Compilation, an Efficient Form of Secure Compilation. ACM Trans.
Program. Lang. Syst. 43, 1, Article 1 (feb 2021), 41 pages. https://doi.org/10.1145/3436809

Marco Patrignani, Robert Künnemann, and Riad S. Wahby. 2022. Universal Composability is Robust Compilation.

arXiv:1910.08634 [cs.PL]

Daniel Patterson and Amal Ahmed. 2019. The next 700 Compiler Correctness Theorems (Functional Pearl). Proc. ACM
Program. Lang. 3, ICFP, Article 85 (jul 2019), 29 pages. https://doi.org/10.1145/3341689

Daniel Patterson and Amal J. Ahmed. 2017. Linking Types for Multi-Language Software: Have Your Cake and Eat It Too.

ArXiv abs/1711.04559 (2017).

Gururaj Saileshwar, Rick Boivie, Tong Chen, Benjamin Segal, and Alper Buyuktosunoglu. 2022. HeapCheck: Low-Cost

Hardware Support for Memory Safety. ACM Trans. Archit. Code Optim. 19, 1, Article 10 (jan 2022), 24 pages. https:

//doi.org/10.1145/3495152

Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. 2019. The High-Level Benefits of Low-Level Sandboxing.

Proc. ACM Program. Lang. 4, POPL, Article 32 (dec 2019), 32 pages. https://doi.org/10.1145/3371100

Gabriel Scherer, Max New, Nick Rioux, and Amal Ahmed. 2018. FabULous Interoperability for ML and a Linear Language.

In International Conference on Foundations of Software Science and Computation Structures (FoSSaCS) (FabOpen image in
new windowous Interoperability for ML and a Linear Language, Vol. LNCS - Lecture Notes in Computer Science), Christel
Baier and Ugo Dal Lago (Eds.). Springer, Thessaloniki, Greece. https://doi.org/10.1007/978-3-319-89366-2_8

Amogha Udupa Shankaranarayana, Gopal Raveendra Soori, Michael Ferdman, and Dongyoon Lee. 2023. TAILCHECK: A

Lightweight Heap Overflow Detection Mechanism with Page Protection and Tagged Pointers.

David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and Compositional Verification of Object Capability Patterns.

Proc. ACM Program. Lang. 1, OOPSLA, Article 89 (oct 2017), 26 pages. https://doi.org/10.1145/3133913

Stelios Tsampas, Andreas Nuyts, Dominique Devriese, and Frank Piessens. 2020. A categorical approach to secure compilation.

ArXiv abs/2004.03557 (2020).

Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. 2019. Linear Capabilities for Fully Abstract Compilation

of Separation-Logic-Verified Code. Proc. ACM Program. Lang. 3, ICFP, Article 84 (jul 2019), 29 pages. https://doi.org/10.

1145/3341688

VMWare. 2023. CVE-2023-20892. Available from MITRE, CVE-ID CVE-2023-20892.. http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2023-20892

Son Tuan Vu, Albert Cohen, Arnaud De Grandmaison, Christophe Guillon, and Karine Heydemann. 2021. Reconciling

optimization with secure compilation. Proceedings of the ACM on Programming Languages 5 (2021), 1 – 30.

Hiroshi Watanabe. 2002. Well-behaved Translations between Structural Operational Semantics. In International Workshop
on Coalgebraic Methods in Computer Science.

Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan. 2019. CT-Wasm: Type-Driven Secure

Cryptography for the Web Ecosystem. Proc. ACM Program. Lang. 3, POPL, Article 77 (jan 2019), 29 pages. https:

//doi.org/10.1145/3290390

Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant Propagation with Conditional Branches. ACM Trans. Program.
Lang. Syst. 13, 2 (apr 1991), 181–210. https://doi.org/10.1145/103135.103136

Torben Weis, Marian Waltereit, and Maximilian Uphoff. 2019. Fyr: a memory-safe and thread-safe systems programming

language. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (2019).

Richard West and Gary T. Wong. 2005. Cuckoo: a Language for Implementing Memory- and Thread-safe System Services.

In International Conference on Programming Languages and Compilers.
Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore, Jonathan Anderson, Brooks Davis, Ben Laurie,

Peter G. Neumann, Robert Norton, and Michael Roe. 2014. The CHERI Capability Model: Revisiting RISC in an Age of

Risk. In Proceeding of the 41st Annual International Symposium on Computer Architecuture (Minneapolis, Minnesota, USA)

(ISCA ’14). IEEE Press, 457–468.

Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro, R. Sekar, Frank Piessens, and Wouter Joosen. 2010. PAriCheck: An

Efficient Pointer Arithmetic Checker for C Programs. In Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security (Beijing, China) (ASIACCS ’10). Association for Computing Machinery, New York, NY,

USA, 145–156. https://doi.org/10.1145/1755688.1755707

Jie Zhou, John Criswell, and Michael Hicks. 2023. Fat Pointers for Temporal Memory Safety of C. Proc. ACM Program. Lang.
7, OOPSLA1, Article 86 (apr 2023), 32 pages. https://doi.org/10.1145/3586038

28

https://doi.org/10.1145/3436809
https://arxiv.org/abs/1910.08634
https://doi.org/10.1145/3341689
https://doi.org/10.1145/3495152
https://doi.org/10.1145/3495152
https://doi.org/10.1145/3371100
https://doi.org/10.1007/978-3-319-89366-2_8
https://doi.org/10.1145/3133913
https://doi.org/10.1145/3341688
https://doi.org/10.1145/3341688
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-20892
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-20892
https://doi.org/10.1145/3290390
https://doi.org/10.1145/3290390
https://doi.org/10.1145/103135.103136
https://doi.org/10.1145/1755688.1755707
https://doi.org/10.1145/3586038

	Abstract
	1 Introduction
	2 Background: Security Properties and Secure Compilers
	2.1 Properties and (Robust) Satisfaction
	2.2 Secure Compilers

	3 Security Properties: Formalisation, Enforcement and Composition
	3.1 Specification Trace Model
	3.2 Monitors

	4 Composing Secure Compilers
	4.1 Secure Sequential Composition
	4.2 Secure Upper and Lower Composition

	5 Case Study: Language Formalisations
	5.1 Shared Language Definitions
	5.2 RoyalBlueLtms: A Temporal but Not Spatial Memory Safe Language
	5.3 RedOrangeL: A Memory-Unsafe Language
	5.4 ApricotLms: Another Memory-Unsafe Language
	5.5 EmeraldLscct: A Memory-Unsafe Language with a Data Independent Timing Mode

	6 Case Study: Composing Secure Compiler Passes and Optimisations
	6.1 Robust Temporal Memory Safety Preservation
	6.2 Robust (Spatial) Memory Safety Preservation
	6.3 Optimising Compilers
	6.4 Robust Strict Cryptographic Constant Time Preservation
	6.5 Robust Preservation of Intersection of Memory Safety and Strict Cryptographic Constant Time

	7 Related Work
	7.1 Secure Compilation as Robust Preservation
	7.2 Other Secure Compilation Criteria
	7.3 Memory Safety Mechanisms
	7.4 Cryptographic Constant Time Mechanisms

	8 Conclusion
	References

