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To ensure that secure applications do not leak their secrets, they are required to uphold several security

properties such as spatial and temporal memory safety as well as cryptographic constant time. Existing work

shows how to enforce these properties individually, in an architecture-independent way, by using secure

compiler passes that each focus on an individual property. Unfortunately, given two secure compiler passes that

each preserve a possibly different security property, it is unclear what kind of security property is preserved

by the composition of those secure compiler passes. This paper is the first to study what security properties

are preserved across the composition of different secure compiler passes. Starting from a general theory of

property composition for security-relevant properties (such as the aforementioned ones), this paper formalises

a theory of composition of secure compilers. Then, it showcases this theory a secure multi-pass compiler

that preserves the aforementioned security-relevant properties. Crucially, this paper derives the security of

the multi-pass compiler from the composition of the security properties preserved by its individual passes,

which include security-preserving as well as optimisation passes. From an engineering perspective, this is the

desirable approach to building secure compilers.
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1 INTRODUCTION
Memory Safety (MS) is a security property obtained by composing Spatial Memory Safety (SMS),

which ensures array accesses are all within bounds, and Temporal Memory Safety (TMS), which

ensures pointers are only used when they are valid [Akritidis et al. 2009; Azevedo de Amorim

et al. 2018; Jim et al. 2002; Michael et al. 2023; Nagarakatte et al. 2009, 2010; Necula et al. 2005].

Cryptographic Constant Time (CCT) is a security property that ensures sensitive data is not

leaked via timing side-channels [Kocher 1996]. Together, SMS, TMS and Strict Cryptographic

Constant Time (sCCT), an enforceable overapproximation of CCT, yield Memory Safety and

Strict Cryptographic Constant Time (MS+sCCT), which is the gold standard of security properties

for secure applications. Programs attaining MS+sCCT do not leak sensitive data either through

erroneous memory accesses, nor through timing side-channels. As discussed in Example 1.1, these

security properties can be enforced by compiler passes [Almeida et al. 2017; Bond et al. 2017], to

ensure programmers need not be aware of the architectural details of where their code will run.
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Example 1.1 (strncpy). Consider the C function strncpy that copies a null-terminated string src
into dst up to a length of n. This function is subject to a subtle SMS vulnerability: The bounds

check i < n should happen before the access to memory location x[i]: otherwise the memory

location past the last element will be leaked to an attacker.

void strncpy(size_t n, char *dst , char *src) {

for(size_t i = 0; src[i] != '\0' && i < n; ++i) {

dst[i] = src[i];

}

}

To prevent this vulnerability, one can use a compilation pass that enforces SMS, such as Soft-

bounds [Nagarakatte et al. 2009] or BaggyBounds [Akritidis et al. 2009].

Because of timing attacks, fixing SMS is not enough to make strncpy secure. In fact, the loop

can terminate early, as soon as the string-terminating character ’\0’ is encountered, thus making

program execution time proportional to the length of the array pointed by src. Also in this case

there exist compiler passes that can rewrite such programs into CCT ones [Cauligi et al. 2019].

Alas, code is not run in isolation, so a malicious attacker could supply code that intracts with

strncpy and trigger a violation of either MS or CCT by calling strncpy with an argument for

src that points to uninitialised memory. This would, in turn, triggering a series of reads from

uninitialised memory, which is an immediate MS violation with devastating real-world conse-

quences [Microsoft 2010a,b,c, 2015; VMWare 2023].

Robust compilers [Abate et al. 2019] are a form of secure compilers that preserve security

properties even in the presence of arbitrary attackers interacting with compiled code. Thus, robust

compilers can be used to prevent vulnerabilities resulting from uninitialised memory (as well as

many other ones), e.g., by targeting capability-based languages such as CHERI [Woodruff et al.

2014], Arm Morello [Arm 2022], or MSWasm [Michael et al. 2023], where the compiler relies on

capabilities to check that pointers are always initialised.

Unfortunately, given secure compiler passes that each preserve a possibly different security

property, there is no way to tell what kind of security property will the composition of those secure

compilers preserve. Worse, without a framework for composing secure compiler passes, it is not

possible to enable separation of concerns, e.g., to have a secure compilation pass that ensures MS

that is developed independently of another secure pass for CCT, that is developed independently

of other passes, such as optimisations.

This paper introduces a framework for reasoning about the composition of secure and optimising

compiler passes akin to those of Example 1.1 and it showcases the power of this framework by

instantiating it on a multi-pass compilation chain. To this end, this paper first discusses how to

compose security properties, such as TMS and SMS into MS, and then adding sCCT to the mix

to obtain MS+sCCT. Then, this paper defines compiler composition and formalises that given

two passes that securely preserve two (possibly distinct) properties, their composition securely

preserves the composition of those properties. The paper then defines several secure compiler passes,

where each is either preserving a different security property (TMS, SMS, sCCT) or performing a

security-preserving optimisation, (e.g., applying Constant Folding (CF) or Dead Code Elimination

(DCE)). Finally, this paper shows that composing these secure compiler passes into a multi-pass

compilation chain results in the end-to-end preservation of MS+sCCT. Crucially, this paper derives

the security of the multi-pass compiler from the composition of the security properties preserved by

its individual passes. This result showcases how the framework allows the kind of formal security

reasoning that compiler writers already want (and already do), obtaining precise, compositional

security reasoning while providing minimal (and modular) proof effort.
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In summary, this paper makes the following contributions:

• This paper formalises security properties (Section 3) that are of interest for real-world

compiler writers, namely TMS, SMS and CCT (as identified by the plethora of work enforcing

such properties individually [Akritidis et al. 2009; Almeida et al. 2017; Bond et al. 2017;

Cauligi et al. 2019; Dhumbumroong and Piromsopa 2020; Jung et al. 2021; Kuepper et al.

2023; Nagarakatte et al. 2009, 2010; Nam et al. 2019; Shankaranarayana et al. 2023; Younan

et al. 2010; Zhou et al. 2023]). Starting from ways to formalise those properties individually,

this paper shows how to compose their formalisation. The resulting security property is

MS+sCCT, i.e., the gold standard of security properties for secure programs [LeMay et al.

2021].

• This paper takes the secure compilation framework of [Abate et al. 2019] and extends it to

reason about the security of all different known forms of compiler composition (Section 4).

For this, this paper studies sequential compiler composition as well as compilers with

multiple input languages or multiple output ones, as used in existing compilation chains.

This paper proves that starting from two compilers that preserve two (possibly distinct)

properties, their composition preserves the intersection of those properties. Finally, this

paper proves that the order of composition of sequential compiler passes is irrelevant for

the resulting security. This is crucial for reordering optimisation passes and thus generating

secure and efficient code.

• This paper presents a case-study showcasing the conjunction of the previous contributions

(Sections 5 and 6). To this end, it presents a compilation chain consisting of several passes

that ultimately preserves MS+sCCT by means of composing the individual, secure passes

concerning TMS, SMS, and sCCT, respectively. Furthermore, the chain includes two optimi-

sation passes: One performs DCE and the other CF. The formalisation of this case study

showcases the power of the presented framework: The divide-and-conquer approach to

software engineering is a viable strategy even for the development of secure compilers.

• The key contributions of this paper are formalised in the Coq proof assistant and the paper

indicates this with .

This paper starts by introducing relevant notions of security properties and secure compilation

(Section 2), and discusses related work (Section 7) before concluding (Section 8).

Open Source & Technical Report. A technical report with the omitted formal details, lemmas

and proofs, as well as the Coq formalisation are available as supplementary material.

2 BACKGROUND: SECURITY PROPERTIES AND SECURE COMPILERS
To introduce the security argument of this paper, this section first presents the concepts of (security)

properties, of their satisfaction, and of their robust satisfaction (i.e., satisfaction in the presence

of an active attacker; Section 2.1). Then, borrowing from existing work [Abate et al. 2021a, 2019],

the section introduces secure compilers as compilers that preserve robust property satisfaction

(Section 2.2).

2.1 Properties and (Robust) Satisfaction
This paper employs the security model where programs are written in a language whose semantics

emits events 𝑎. Events include security-relevant actions (e.g., reading from and writing to memory,

as detailed in Section 3) and the unobservable event 𝜀. As programs execute, their emitted events

are concatenated in traces 𝑎, which serve as the description of the behaviour of a program.
1

1
Throughout the paper, sequences are indicated with an overbar (i.e., 𝑎), empty sequences with [ · ], and concatenation of

sequences 𝑎1, 𝑎2 as 𝑎1 · 𝑎2. Prepending elements to sequences uses the same notation: 𝑎 · 𝑎.

3
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Properties 𝜋 are sets of traces of admissible program behaviours, ascribing what said property

considers valid. The set of all properties can be partitioned into different classes (C), i.e., safety,
liveness, and neither safety nor liveness [Clarkson and Schneider 2008]. A class is simply a set of

properties and for the class of safety properties, it is decidable whether a trace satisfies a safety

property with just a finite trace prefix. As an example, consider a trace describing an interaction

with a memory where the deallocation of an address 𝑙 precedes a read at that address in memory:

Dealloc 𝑙 · Read 𝑙 1729 · . . . . This program behaviour is insecure with respect to a canonical notion

of (temporal) memory safety dictating no use-after-frees of pointers [Azevedo de Amorim et al.

2018; Nagarakatte et al. 2010], because it reads from a memory location that was freed already. The

previous finite trace prefix is enough to decide that the trace does not satisfy TMS and there is

no way to append events to this prefix which would result in the trace being admissible. In the

following, the execution of a whole program𝑤 that terminates in state 𝑟 according to the language

semantics and produces trace 𝑎 is written as 𝑤
𝑎
=⇒ 𝑟 . With this, property satisfaction is defined

as follows: whole programs 𝑤 satisfy a property 𝜋 iff 𝑤 yields a trace 𝑎 such that 𝑎 satisifies 𝜋

(Definition 2.1).

Definition 2.1 (Property Satisfaction). ⊢ 𝑝 : 𝜋
def
= if𝑤

𝑎
=⇒ 𝑟 , then 𝑎 ∈ 𝜋 .

Property satisfaction is defined on whole programs, i.e., programs without missing definitions.

Thus, from a security perspective, this considers only a passive attacker model, where the attacker

observes the execution and, e.g., retrieves secrets from that. To consider a stronger model similarly

to what existing work does [Abate et al. 2021a, 2019; Backes et al. 2014; Bengtson et al. 2011;

Fournet et al. 2007; Gordon and Jeffrey 2003; Maffeis et al. 2008; Michael et al. 2023; Sammler

et al. 2019; Swasey et al. 2017], the concept of satisfaction can be extended with robustness. Robust
satisfaction considers partial programs 𝑝 , i.e., components with missing imports, which cannot

run until said imports are fulfilled. To remedy this, linking takes two partial programs 𝑝1, 𝑝2 and

produces a whole program𝑤 , i.e., link (𝑝1;𝑝2) = 𝑤 . As typically done in works that consider the

execution of partial programs [Abate et al. 2019; Ahmed and Blume 2011; Bowman and Ahmed

2015; Devriese et al. 2017a,b; El-Korashy et al. 2021; Patrignani and Garg 2021; Patterson and Ahmed

2017; Van Strydonck et al. 2019], this paper assumes that whole programs are the result of linking

partial programs referred to as context (ctx) and component (comp). The context is an arbitrary

program and thus has the role of an attacker that can interact with the component by means of

whatever features the programming language has, and the component is what is security-relevant.

With this, Definition 2.1 (Property Satisfaction) can be extended as follows: for components 𝑝 to

robustly satisfy a property 𝜋 , take an attacker context 𝐶 and link it with 𝑝 , the resulting whole

program must satisfy 𝜋 .

Definition 2.2 (Robust Satisfaction). ⊢𝑅 𝑝 : 𝜋
def
= ∀𝐶 , if link (𝐶;𝑝) = 𝑤 , then ⊢ 𝑤 : 𝜋 .

Example 2.3 (Double Free in Bluetooth Subsystem). Consider CVE-2021-3564 [BlockSec 2021],

one of many submissions for a double-free vulnerability. The vulnerability arises due to a race

condition where the context-level function hci_cmd_work was not expected to behave maliciously,

since it resides in the same source-code repository where the vulnerability occurs. Nevertheless, the

component-level code of hci_dev_do_open is linked with hci_cmd_work and does not atomically

check whether a pointer has been freed already: Therefore, hci_dev_do_open does not satisfy the

no-double-frees property robustly, since there is an implementation for hci_cmd_work that leads
to a violation of that property when linked with hci_dev_do_open.

4
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2.2 Secure Compilers
A compiler (𝛾LL) translates syntactic descriptions of programs from a source (L) into a target (L)
programming language. This translation is considered correct if it is semantics-preserving. That is,

for a whole program w, the compiler should relate the L semantics of w with the semantics of T
of the compiled counterpart of p in such a way that they are „compatible”. Unfortunately, correct

compilers may be insecure compilers [Abadi 1999a; Ahmed et al. 2018; Kennedy 2006; Patrignani

et al. 2019] and programs translated by insecure compilers can violate security properties that

the programmer assumes to hold. To define when a compiler is secure, this paper uses the robust

compilation framework [Abate et al. 2019], which the following definition summarises.

For compilers 𝛾LL to robustly preserve a class of properties C, if for any property 𝜋 of that class C

and programs p written in L where p robustly satisfies 𝜋 , then the compilation of p, 𝛾LL (p), must

robustly satisfy 𝜋 .

Definition 2.4 (Robust Compilation). ⊢ 𝛾LL : C
def
=∀ (𝜋 ∈ C) (p ∈ Ltms) , if ⊢𝑅 p : 𝜋 , then ⊢𝑅 𝛾LL (p) : 𝜋 .

Note that a class of properties C can represent just one property 𝜋 by lifting [Clarkson and

Schneider 2008] that property to sets of properties, i.e., use the powerset of 𝜋 instead of 𝜋 itself.

Because of this, this paper writes ⊢ 𝛾LL : 𝜋 , even though 𝜋 is a property and not a class.

Example 2.5 (Types). Suppose L is a statically-typed language similar to C and T is dynamically

typed, where both share the same syntax up to dynamic type checks. Consider the following L
component and its compiled version below.

fn foo (char ∗ x, int n) := ifz valid_ptr(x, n, sizeof (char)) then x[0] else − 1
fn foo ( x, n) := ifz valid_ptr(x, n, sizeof (char)) then x[0] else − 1

While the compiler emits code that may look correct, the generated code does not check that the

provided argument is of the right type. Even though the pointer x is checked for validity, the

context foo((int∗)y, 1) is able to provoke a read out of bounds. Suppose the component transferred

control to the context and passed ownership of a char pointer y sized 1 cells, the context can now

call the component again, casting this buffer to an int∗ prior to that call. The pointer is valid for

one char-sized memory cell, as expected, but the actual read operation now returns sizeof (int)
many bytes instead of just sizeof (char) many. Thus, even if foomay have been robust with respect

to the SMS, its compiled counterpart is not and therefore the compiler fails to attain Definition 2.4.

3 SECURITY PROPERTIES: FORMALISATION, ENFORCEMENT AND COMPOSITION
This section introduces a tracemodel and uses it to define the key properties of interest for this paper:

TMS, SMS, MS, and sCCT (Section 3.1). These properties are of practical importance (as mentioned

in Section 1) and also of interest in the case study (Sections 5 and 6) this paper presents later. Lastly,

for each of the key properties, this section introduces corresponding monitors (Section 3.2) that

check them.

3.1 Specification Trace Model

(Security Tag) 𝜎 ::= � | � (Control Tag) 𝑡 ::= ctx | comp (Event) 𝑎 ::= 𝜀 |  | 𝑎𝑏 ; 𝑡 ;𝜎
(Pre-event) 𝑎𝑏 ::= Alloc 𝑙 n | Dealloc 𝑙 | Use 𝑙 n | Branch n | Binop n

The specification trace model defines events as either the empty event (𝜀), a crash ( ), or as
tuples consisting of a pre-event, a control-tag, and a security-tag. The purpose of the model is to

define key security properties of interest, such as MS or a stricter variant of cryptographic constant

time. To this end, security-tags indicate whether an event contains sensitive information (�) or not

5
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(�), while control-tags state whether the context (ctx) or the component (comp) are responsible for

emitting the event. The latter is necessary to be able to ignore actions done by a spurious context

that, e.g., immediately deallocates a memory location twice, thus violating TMS [Nagarakatte et al.

2010]. Lastly, pre-events describe the actual kind of event that happened. One such kind is the

allocation event (Alloc 𝑙 n) that fires whenever a program claims 𝑛 cells of memory and stores them

at address 𝑙 . Dually, deallocation (Dealloc 𝑙 ) announces that the object at location 𝑙 is freed. These

two events alone are enough to provide a partial description of TMS by requiring that, e.g., there is

only one deallocation event that carries a location 𝑙 . To be able to express SMS, there is also an event

to describe reads from and writes to memory (Use 𝑙 n). Finally, for cryptographic code, there is a

general guideline that secrets must not be visible on a trace. Moreover, an instruction whose timing

is data-dependent must not have a secret as an operand. Typical operations with data-dependent

timing are branches and certain binary operations, such as division
2
. Both operations are also

modelled in the specification trace model (Branch n and Binop n).

3.1.1 Temporal Memory Safety. TMS is a safety property that describes that an unallocated object

must not be used in any way. Moreover, the property requires that all allocated objects must be

deallocated at some point.

Definition 3.1 (TMS).

tms :=


𝑎

����������
Alloc 𝑙 n;t;𝜎 ≤𝑎 Dealloc 𝑙 ;t;𝜎’

Use 𝑙 n;t;𝜎 ≤𝑎 Dealloc 𝑙 ;t;𝜎’

if Alloc 𝑙 n;t;𝜎 in 𝑎 then Dealloc 𝑙 ;t;𝜎’ in 𝑎

at most one Dealloc 𝑙 ;t;𝜎 in 𝑎

at most one Alloc 𝑙 n;t;𝜎 in 𝑎


Hereby, the notation 𝑎1 ≤𝑎 𝑎2 means that if 𝑎1 is in 𝑎 and if 𝑎2 is in 𝑎, then 𝑎1 appears before 𝑎2.

3.1.2 Spatial Memory Safety. SMS prohibits out-of-bounds accesses:

Definition 3.2 (SMS).

sms :=
{
𝑎
��
If Alloc 𝑙 n;t;𝜎 ≤𝑎 Use 𝑙 m;t;𝜎’, then𝑚 < 𝑛

}
3.1.3 Memory Safety. Full MS (similar to earlier work [Jim et al. 2002; Michael et al. 2023; Na-

garakatte et al. 2009, 2010; Necula et al. 2005]) is then described as the conjunction of Definitions 3.1

and 3.2. Note, however, that this definition says nothing about memory-safety issues introduced by

side-channels, such as speculation.

Definition 3.3 (MS).
ms := tms∩ sms

3.1.4 Strict Cryptographic Constant Time. CCT is a hypersafety property [Barthe et al. 2018] and,

thus, difficult to check with monitors. This is because, intuitively, hypersafety properties can relate

multiple execution traces with eachother, but monitors work on a single execution. To sidestep this

issue, this section defines the property sCCT, a stricter variant of CCT that enforces the policy that

no secret appears on a trace (inspired by earlier work [Almeida et al. 2017]).

Definition 3.4 (sCCT).

scct :=
{
𝑎
�� 𝑎 = [·] or 𝑎 = 𝑎𝑏 ; 𝑡 ;� · 𝑎′ ∧ 𝑎′ ∈ scct

}
2
This is highly architecture-dependent, but division is an operation that serves as a classic example for a data-dependent

timing instruction, e.g., [Arm 2020, p. 755].
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3.1.5 Memory Safe, Strict Cryptographic Constant Time. The combination of MS and sCCT is the

intersection of these properties, MS+sCCT. Since MS and sCCT are just sets of traces that, intuitively,

contain all program behaviors that follow a security policy, the intersection of them contains all

program behaviors that follow both security policies, i.e., it entails all program behaviours that are

both MS and sCCT.

Definition 3.5 (MS and sCCT).

msscct := ms∩ scct

3.2 Monitors
Monitors enforce safety properties by accepting or rejecting traces, i.e., if it rejects a trace, the trace

does not satisfy the property the monitor checks. Since reasoning on monitors is easier than directly

on just traces, this section presents a monitor for each of the previously shown safety properties

(Section 3.1). To lessen the burden when proving that a monitor accepts the trace of a program

execution, each monitor uses a custom trace model that contains only the relevant information

related to the property the monitor checks. To go from specification traces 𝑎 to monitor-level traces

𝒂, each property 𝜋 has an associated event agreement relation 𝑎 �𝜋 𝒂. Figure 1 shows how the

event agreement is lifted to traces. The trace agreement is the same for all properties 𝜋 up to the

𝑎 �∗𝜋 𝒂 „Specification-level trace 𝑎 agrees with monitor-level trace 𝒂 with respect to property 𝜋 .”

(traceagree-empty)

[·] �∗𝜋 [·]

(traceagree-ign-L)

𝑎 �∗𝜋 𝒂

𝜀 · 𝑎 �∗𝜋 𝒂

(traceagree-ign-R)

𝑎 �∗𝜋 𝒂

𝑎 �∗𝜋 𝜺 · 𝒂

(traceagree-cons)

𝑎 �𝜋 𝒂 𝑎 �∗𝜋 𝒂

𝑎 · 𝑎 �∗𝜋 𝒂 · 𝒂

Fig. 1. Trace-Agreement relation that equates specification-level traces with monitor-level traces.

use of the event agreement in Rule traceagree-cons. With agreements, this section defines monitor

satisfaction for traces and then it proves that monitor satisfaction implies property satisfaction.

To this end, monitor satisfaction is defined as follows. A specification trace 𝑎 monitor-satisfies

property 𝜋 iff there exists a (final) monitor state𝑇 and an abstract trace 𝒂 such that the specification

trace 𝑎 agrees with abstract trace 𝒂 and the initial monitor
3
can step to the (final) monitor state 𝑇

with abstract trace 𝒂.

Definition 3.6 (Monitor Satisfaction). ⊢𝑚𝑜𝑛 𝑎 : 𝜋
def
= ∃𝒂 𝑇 , 𝑎 �∗𝜋 𝒂 and ⊢ ∅ 𝒂 ∗𝑇 .

3.2.1 Monitor for TMS.

(Abstract Store) 𝑇𝑇𝑀𝑆 ::= {allocated : 𝐿 × 𝑡, freed : 𝐿 × 𝑡} ∅ := {allocated : ∅, freed : ∅}
(Abstract Events) 𝒂 ::= 𝜺 | 𝑨𝒍𝒍𝒐𝒄 𝑙 𝑡 | 𝑫𝒆𝒂𝒍𝒍𝒐𝒄 𝑙 𝑡 | 𝑼𝒔𝒆 𝑙 𝑡 |   

⊢ 𝑇𝑇𝑀𝑆
𝒂
𝑇𝑇𝑀𝑆

′
„Monitor 𝑇𝑇𝑀𝑆 does one step to 𝑇𝑇𝑀𝑆

′
given event 𝒂.”

3
In this paper, for all monitors, the initial monitor state is denoted as ∅.

7
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(tms-use)

(𝑙 ; 𝑡) ∈ 𝑇𝑇𝑀𝑆 .allocated (𝑙 ; 𝑡) ∉ 𝑇𝑇𝑀𝑆 .freed

⊢ 𝑇𝑇𝑀𝑆
𝑼𝒔𝒆 𝑙 𝑡

𝑇𝑇𝑀𝑆

(tms-alloc)

(𝑙 ; 𝑡) ∉ 𝑇𝑇𝑀𝑆 .allocated (𝑙 ; 𝑡) ∉ 𝑇𝑇𝑀𝑆 .freed

𝑇𝑇𝑀𝑆
′ = {allocated : 𝑇𝑇𝑀𝑆 .allocated ∪ {(𝑙 ; 𝑡)} , freed : 𝑇𝑇𝑀𝑆 .freed}

⊢ 𝑇𝑇𝑀𝑆
𝑨𝒍𝒍𝒐𝒄 𝑙 𝑡

𝑇𝑇𝑀𝑆
′

(tms-dealloc)

(𝑙 ; 𝑡) ∈ 𝑇𝑇𝑀𝑆 .allocated (𝑙 ; 𝑡) ∉ 𝑇𝑇𝑀𝑆 .freed

𝑇𝑇𝑀𝑆
′ = {allocated : 𝑇𝑇𝑀𝑆 .allocated \ {(𝑙 ; 𝑡)} , freed : 𝑇𝑇𝑀𝑆 .freed ∪ {(𝑙 ; 𝑡)}}

⊢ 𝑇𝑇𝑀𝑆
𝑫𝒆𝒂𝒍𝒍𝒐𝒄 𝑙 𝑡

𝑇𝑇𝑀𝑆
′

For TMS, the state of the monitor is a record with two sets keeping track of allocated and

deallocated locations. Rule tms-use simply requires that a location is (i) allocated and (ii) not freed.

Rules tms-alloc and tms-dealloc both require a location to not be freed already and extend the

monitor state accordingly. This restriction effectively disallows reallocation to reassign the same

location to an object. However, the definition can easily be adapted by, e.g., attaching a natural

number serving as a counter. Contrary to other monitors in this paper, the multi-step relation of

the TMS monitor is non-standard:

⊢ 𝑇𝑇𝑀𝑆
𝒂 ∗𝑇𝑇𝑀𝑆

′
„Monitor 𝑇𝑇𝑀𝑆 multi-steps to 𝑇𝑇𝑀𝑆

′
given trace 𝒂.”

(tms-refl)

𝑇𝑇𝑀𝑆 .allocated = ∅

⊢ 𝑇𝑇𝑀𝑆

[ · ] ∗𝑇𝑇𝑀𝑆

(tms-ign-trans)

⊢ 𝑇𝑇𝑀𝑆
𝒂 ∗𝑇𝑇𝑀𝑆

′

⊢ 𝑇𝑇𝑀𝑆
𝜺 ·𝒂

𝑇𝑇𝑀𝑆
′

(tms-trans)

⊢ 𝑇𝑇𝑀𝑆
𝒂
𝑇𝑇𝑀𝑆

′ ⊢ 𝑇𝑇𝑀𝑆
′ 𝒂 ∗𝑇𝑇𝑀𝑆

′′

⊢ 𝑇𝑇𝑀𝑆
𝒂 ·𝒂

𝑇𝑇𝑀𝑆
′′

Rules tms-ign-trans and tms-trans are the same for all monitors, but Rule tms-refl has, in this

case, an additional premise that no more locations should be allocated. This rejects the behavior of

programs that forget to free memory.

𝑎 �tms 𝒂 „Abstract event 𝒂 is equivalent to 𝑎 with respect to TMS.”

(tms-alloc-authentic)

Alloc 𝑙 𝑛; 𝑡 ;𝜎 �tms 𝑨𝒍𝒍𝒐𝒄 𝑙 𝑡

(tms-branch-authentic)

Branch 𝑛 �tms 𝜺

(tms-abort-authentic)

 �tms   
The trace agreement is entirely straightforward, so only allocation, branch, and crash are shown.

Lemma 3.7 (Traces with Monitor Satisfaction are tms). If ⊢𝑚𝑜𝑛 𝑎 : tms, then 𝑎 ∈ tms.

Example 3.8 (A program not satisfying TMS). Consider the following C++11 library that calls

strncpy (Example 1.1) and prints the result to the standard output stream.

int greet() { // allocates 12 chars containing a greeting message

char* greetings = new char [12] { "Hello␣POPL!" }; // <- address 𝑙𝑥

char* to = new char [12]; // <- address 𝑙𝑦

strncpy (12, to, greetings );

delete to;

printf("%cOPL\n", to[6]);

}

8
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Up to the body of printf, the program execution yields the specification trace Alloc 𝑙𝑥 12; comp;� ·
Alloc 𝑙𝑦 12; comp;� ·Use 𝑙𝑥 0; comp;� ·Use 𝑙𝑥 0; comp;� ·Use 𝑙𝑦 0; comp;� ·Use 𝑙𝑥 1; comp;� · . . . ·
Use 𝑙𝑥 12; comp;� · Dealloc 𝑙𝑦 ; comp;� · Use 𝑙𝑦 6; comp;�. Relating this trace to abstract monitor

events yields 𝒂 = 𝑨𝒍𝒍𝒐𝒄 𝑙𝑥 comp · 𝑨𝒍𝒍𝒐𝒄 𝑙𝑦 comp · 𝑼𝒔𝒆 𝑙𝑥 comp · 𝑼𝒔𝒆 𝑙𝑥 comp · 𝑼𝒔𝒆 𝑙𝑦 comp · . . . ·
𝑼𝒔𝒆 𝑙𝑥 comp ·𝑫𝒆𝒂𝒍𝒍𝒐𝒄 𝑙𝑦 comp ·𝑼𝒔𝒆 𝑙𝑦 comp. Remembering the definition of strncpy (Example 1.1),

observe that it does not deallocate its arguments. Even though the trace contains an out-of-bounds

access right before returning from strncpy, this is no concern for TMS, since the location 𝑙𝑥 is still

allocated. However, having returned from strncpy, the greet function continues and deallocates

𝑙𝑦 whose subsequent use in the printf call is a use-after-free bug.

The fix would be to delete greetings instead of to and add a delete to after the printf call,
which leads to the abstract monitor trace 𝒂′ = 𝑨𝒍𝒍𝒐𝒄 𝑙𝑥 comp · 𝑨𝒍𝒍𝒐𝒄 𝑙𝑦 comp · 𝑼𝒔𝒆 𝑙𝑥 comp ·
𝑼𝒔𝒆 𝑙𝑥 comp · 𝑼𝒔𝒆 𝑙𝑦 comp · . . . · 𝑼𝒔𝒆 𝑙𝑥 comp · 𝑫𝒆𝒂𝒍𝒍𝒐𝒄 𝑙𝑥 comp · 𝑼𝒔𝒆 𝑙𝑦 comp. It follows that

⊢𝑚𝑜𝑛 𝒂′ : tms and from Lemma 3.7 (Traces with Monitor Satisfaction are tms), it follows that the

program satisfies Definition 3.1 (TMS), even though the program still violates SMS.

3.2.2 Monitor for SMS.

(Abstract Store) 𝑇𝑆𝑀𝑆 := 𝐿 × 𝑡 × N (Abstract Events) 𝒂 ::= 𝜺 | 𝑨𝒍𝒍𝒐𝒄 𝑙 𝑡 𝑛 | 𝑼𝒔𝒆 𝑙 𝑡 𝑛

⊢ 𝑇𝑆𝑀𝑆
𝒂
𝑇𝑆𝑀𝑆

′
„Monitor 𝑇𝑆𝑀𝑆 does one step to 𝑇𝑆𝑀𝑆

′
given event 𝒂.”

(sms-use)

(𝑙 ; 𝑡 ;𝑚) ∈ 𝑇𝑆𝑀𝑆 𝑛 < 𝑚

⊢ 𝑇𝑆𝑀𝑆
𝑼𝒔𝒆 𝑙 𝑡 𝑛

𝑇𝑆𝑀𝑆

(sms-alloc)

(𝑙 ; 𝑡 ;𝑚) ∉ 𝑇𝑆𝑀𝑆

⊢ 𝑇𝑆𝑀𝑆
𝑨𝒍𝒍𝒐𝒄 𝑙 𝑡 𝑛

𝑇𝑆𝑀𝑆 ∪ {(𝑙 ; 𝑡 ;𝑛)}
The state of the monitor for SMS is a set containing tuples of locations, control-tags, and the alloca-

tion size. In comparison to the trace model of the TMS monitor, the trace model here is extended by

sizing and positional information. Rule sms-use performs a bounds check and Rule sms-alloc adds

bounds information to the state of the monitor. The trace agreement is entirely straightforward

and similar to the one for TMS.

Lemma 3.9 (Traces with Monitor Satisfaction are sms). If ⊢𝑚𝑜𝑛 𝑎 : sms, then 𝑎 ∈ sms.

Example 3.10 (Normal invocation of strncpy). Consider the insecure strncpy function from

Example 1.1 with a context strncpy(2, x, y), where x and y are pointers to valid regions of

memory with allocated space for exactly two cells and do not contain the null-terminating character

’\0’. For the sake of this example, the pointers have been allocated by the component and passed

to the context. The loop of strncpy will copy exactly two cells and then check the loop condition

for the last time. At that stage, the induction variable i is equal to 2 and, unfortunately, the order of
checks is such that first the cell x[i] is read prior to bounds checking i < n. Because of this, there
is an out-of-bounds memory access right before exiting the function. This is also visible on the trace,

which can be sketched as . . . ·Alloc 𝑙𝑥 2; comp;� · . . . ·Alloc 𝑙𝑦 2; comp;� · . . . · Use 𝑙𝑥 0; comp;� ·
Use 𝑙𝑦 0; comp;� ·Use 𝑙𝑥 1; comp;� ·Use 𝑙𝑦 1; comp;� ·Use 𝑙𝑥 2; comp;� · . . ., where 𝑙𝑥 and 𝑙𝑦 are

the memory addresses associated to x and y, respectively. Omitting the events for all „. . .” for sake

of brevity, the abstract monitor trace of this is 𝑨𝒍𝒍𝒐𝒄 𝑙𝑥 comp 2 · 𝑨𝒍𝒍𝒐𝒄 𝑙𝑦 comp 2 · 𝑼𝒔𝒆 𝑙𝑥 comp 0 ·
𝑼𝒔𝒆 𝑙𝑦 comp 0 · 𝑼𝒔𝒆 𝑙𝑥 comp 1 · 𝑼𝒔𝒆 𝑙𝑦 comp 1 · 𝑼𝒔𝒆 𝑙𝑥 comp 2.

After the allocation events, the state of the monitor is

{
(𝑙𝑥 ; comp; 2), (𝑙𝑦 ; comp; 2)

}
. All uses up

to the last are accepted by the monitor, but the last event does not satisfy the premise 2 < 2 in

Rule sms-use. Therefore, the whole program (strncpy linked with this kind of context) is not SMS.

3.2.3 Combining TMS and SMS Monitors to obtain MS.

9
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⊢ 𝑇𝑀𝑆
𝒂
𝑇𝑀𝑆

′
„Monitor 𝑇𝑀𝑆 does one step to 𝑇𝑀𝑆

′
given event 𝒂.”

(ms-step)

⊢ 𝑇𝑇𝑀𝑆

𝒂tms

𝑇𝑇𝑀𝑆
′ ⊢ 𝑇𝑆𝑀𝑆

𝒂sms

𝑇𝑆𝑀𝑆
′

⊢ (𝑇𝑇𝑀𝑆 ,𝑇𝑆𝑀𝑆 )
(𝒂tms,𝒂sms ) (𝑇𝑇𝑀𝑆

′,𝑇𝑆𝑀𝑆
′)

The combined monitor runs the one for TMS and the one for SMS in a lockstep. The trace agreement

similarly just relates a specification event with an abstract TMS-event 𝒂tms and with an abstract

SMS-event 𝒂sms.

Lemma 3.11 (Traces with Monitor Satisfaction are ms). If ⊢𝑚𝑜𝑛 𝑎 : ms, then 𝑎 ∈ ms.

3.2.4 Monitor for sCCT.

(Abstract Store) 𝑇𝑠𝐶𝐶𝑇 := ∅ (Abstract Events) 𝒂 := 𝜺 |   | 𝑨𝒏𝒚

⊢ 𝑇𝑠𝐶𝐶𝑇 𝒂
𝑇𝑠𝐶𝐶𝑇

′
„Monitor 𝑇𝑠𝐶𝐶𝑇 does one step to 𝑇𝑠𝐶𝐶𝑇

′
given event 𝒂.”

(scct-none)

⊢ 𝑇𝑠𝐶𝐶𝑇 𝜺
𝑇𝑠𝐶𝐶𝑇

(scct-abort)

⊢ 𝑇𝑠𝐶𝐶𝑇
  
𝑇𝑠𝐶𝐶𝑇

The monitor state for the sCCT monitor is completely empty, since it does not need to keep track

of information. As soon as any event is hit, the execution gets stuck, since any event is considered

confidental from the perspective of this monitor.

𝑎 �scct 𝒂 „Abstract event 𝒂 is equivalent to 𝑎 with respect to CCT.”

(scct-low-authentic)

𝑎𝑏 ; 𝑡 ;� �scct 𝜺

(scct-high-authentic)

𝑎𝑏 ; 𝑡 ;� �scct 𝑨𝒏𝒚

(scct-empty-authentic)

𝜀 �scct 𝜺

(scct-abort-authentic)

 �scct   
Accordingly, the event agreement simply disregards all events that involved public data (�) while

mapping any other event that does involve private data (�) to the abstract 𝑨𝒏𝒚 event.

Lemma 3.12 (Monitor Traces are scct). If ⊢𝑚𝑜𝑛 𝑎 : scct, then 𝑎 ∈ scct.

Example 3.13 (Data-independent timing mode). Consider the call strncpy(1,x,y) to the strncpy
function (Example 1.1) with low (�) security for x and high security (�) for y. The trace of just
the copying part inside of strncpy looks like Use 𝑙𝑥 0; comp;� · Use 𝑙𝑦 0; comp;�. In terms of

the abstract monitor trace, this is just 𝑨𝒏𝒚. Running this on the monitor would result in getting

stuck, since there is no matching rule to step in the presence of 𝑨𝒏𝒚 event. By means of additional

features to ensure cryptographic constant time even in the presence of memory reads and loads,

such as a flag to enable a data independent timing mode, which is present in both Arm [Arm 2020,

p. 543] and Intel [Intel 2023, p. 80] processors, the original trace now does Use 𝑙𝑦 0; comp;� instead

of Use 𝑙𝑦 0; comp;�. Because of this, the whole trace of the component equates to 𝜺 and the monitor

can step without getting stuck.

3.2.5 Combining MS and sCCT Monitors to obtain MS+sCCT. The combination of monitors for

MS and sCCT yields one for MS+sCCT. The construction is entirely similar to the one for MS

(Section 3.2.3).

Lemma 3.14 (Traces with Monitor Satisfaction are msscct). If ⊢𝑚𝑜𝑛 𝑎 : msscct, then 𝑎 ∈
msscct.
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4 COMPOSING SECURE COMPILERS
This section presents the key meta-theoretic results of this paper concerning sequential compiler

composition (and of optimisation passes) (Section 4.1) and concerning other kinds of compiler

composition (Section 4.2).

4.1 Secure Sequential Composition
The main result is that secure compilers in the robust compilation framework [Abate et al. 2019]

compose sequentially. This is not intuitive in the sense that in the security domain, composition

does not work without additional generalizations [Canetti et al. 2006; Fabian et al. 2022; McCullough

1988]. The sequential composition of compilers 𝛾LL and 𝛾L
L is defined as follows: Given an L program

p and compilers 𝛾LL, 𝛾
L
L, its compiled L counterpart is obtained by plugging p into 𝛾LL ◦ 𝛾L

L.

Definition 4.1. 𝛾LL ◦ 𝛾L
L
def
= Given p, yield 𝛾L

L
(
𝛾LL (p)

)
Consider the compilation chain for TypeScript. First, TypeScript programs are translated to

JavaScript which, e.g., V8 [Google 2008] eventually compiles in parts to IgnitionBC. The following
theorem establishes what happens if all these compilation steps were robustly secure with respect

to MS: The resulting IgnitionBC code would be MS regardless of the context the binary runs in.

Given 𝛾LL robustly preserves C1 and 𝛾
L
L robustly preserves C2, it follows that their sequential

composition 𝛾LL ◦ 𝛾L
L robustly preserves the intersection of classes C1 and C2.

Theorem 4.2 (Seqential Composition of Secure Compilers). If ⊢ 𝛾LL : C1 and ⊢ 𝛾L
L : C2, then

⊢ 𝛾LL ◦ 𝛾L
L : C1 ∩ C2.

Since the composition of secure compilers is again a secure compiler, the theorem generalises to

a whole chain of 𝑛 secure compilers.

4.1.1 Securing Optimisations. Notably, real-world compilation chains also perform a series of

(sequential) passes whose main purpose is not necessarily to translate from one language to

another, but to, e.g., optimise the code or enforce a certain property. Both examples can be seen in

practice, e.g. as in the work of [Akritidis et al. 2009; Manjikian and Abdelrahman 1997; Nagarakatte

et al. 2009, 2010; Wegman and Zadeck 1991] and many more. Consider the following two LLVM

optimisation passes: CF, which rewrites constant expressions to the constant they evaluate to, and

DCE, which removes dead code by rewriting conditional branches. The order in which CF and

DCE are performed influences the final result of the compilation (see Figure 2). This phase ordering

let a = true in

if a then

print "a"

else

print "b"

if true then

print "a"

else

print "b"

print "a"DCE

CF DCE

Fig. 2. Example program where the level of optimisations differ for one pass of applying CF and DCE in any
order. Every edge is a compilation pass and the label on the edge states what the pass does, i.e., CF or DCE.
The source code in the nodes is a glorified compiler intermediate representation and the code gets more
optimised towards the right hand side of the figure.

problem is well–known in literature and a practical solution is to simply perform a fixpoint iteration
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of the optimisation pipeline [Click and Cooper 1995]. Compiler engineers typically try to find an

order of optimisations that yields well-optimised programs for either code size [Cooper et al. 1999]

or performance [Kulkarni et al. 2006]. Corollary 4.3 justifies that any such order of compilation

passes is valid with respect to security. So, given two compilation passes 𝛾1
L
L, 𝛾2

L
L, both robustly

preserving class C1 or C2, respectively, for any order of their composition the composed compiler

robustly preserves the intersection of C1 and C2.

Corollary 4.3 (Seqential Composition of Secure Compilers). If ⊢ 𝛾1L
L : C1 and ⊢ 𝛾2L

L : C2,
then ⊢ 𝛾1L

L ◦ 𝛾2L
L : C1 ∩ C2 and ⊢ 𝛾2L

L ◦ 𝛾1L
L : C2 ∩ C1.

4.2 Secure Upper and Lower Composition
Besides sequential composition, there are two other compositions, namely an upper, i.e., a compiler

that takes multiple inputs and yields one output, and a lower composition, i.e., a compiler that

takes one input and yields multiple outputs. Define the upper composition 𝛾L+LL as follows: Given a

program p, its compiled counterpart is obtained by plugging p into 𝛾LL if p ∈ L or by plugging p

into 𝛾L
L if p ∈ L.

Definition 4.4 (Upper Composition). 𝛾L+LL
def
= 𝜆p.

{
if p ∈ L, then 𝛾LL (p)
if p ∈ L, then 𝛾L

L (p)

Examples of this are present in industry: Consider the Java Virtual Machine bytecode JVMBC,
which is a popular target for programming language designers due to its high performance and

relevance in industry. Compilers for several programming languages have it as their target language,

some popular instances are Java and Kotlin. Technically speaking, they both compile to class files

and Kotlin objects are considered to be the same as Java objects at that point. Both languages can

be used at the same time in one project [Google [n. d.]]. A compiler that accepts both Java and
Kotlin code translating to the same target language or intermediate representation performs a

kind of upper composition. Now, the following theorem tells us what happens if these are secure:

Given𝛾LL robustly preserves C1 and𝛾
L
L robustly preserves C2, it follows that their upper composition

𝛾L+LL robustly preserves the intersection of classes C1 and C2.

Theorem 4.5 (Upper Composition of Secure Compilers). If ⊢ 𝛾LL : C1 and ⊢ 𝛾L
L : C2, then

⊢ 𝛾L+LL : C1 ∩ C2.

Dually, the lower composition is concerned about compilers that accept the same source but

yield different target languages. Define the lower composition 𝛾LL+L as follows: Given a program p,

its compiled counterpart is obtained by plugging p into 𝛾LL or by plugging p into 𝛾LL, respectively,

based on the internal decision.

Definition 4.6 (Lower Composition). 𝛾LL+L
def
= 𝜆p, 𝐿.

{
if 𝐿 = L, then 𝛾LL (p)
if 𝐿 = L, then 𝛾LL (p)

Consider two compilers both accepting LLVMIR [Lattner and Adve 2004] and one of them emits

x86_64, while the other emits ARMv8. It is intuitive that they are in some sense composed in the

LLVM framework, but the decision of when to use one over the other is inherently internal to the

formalisation effort of this kind of composition. For example, the user of this compiler provides an

explicit flag that instructs to emit x86_64 or the framework itself detects the target platform via

heuristics, such as supported instructions.

12
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The following theorem demonstrates what happens if the involved compilers are secure: Given

𝛾LL robustly preserves C1 and 𝛾
L
L robustly preserves C2, it follows that their lower composition 𝛾LL+L

robustly preserves the intersection of classes C1 and C2.

Theorem 4.7 (Lower Composition of Secure Compilers). If ⊢ 𝛾LL : C1 and ⊢ 𝛾L
L : C2, then

⊢ 𝛾LL+L : C1 ∩ C2.

5 CASE STUDY: LANGUAGE FORMALISATIONS
This section defines programming languages that the secure compilers defined in the next section

will use. To this end, this section defines the languages Ltms, L, Lms, and Lscct which share many

common elements (presented in Section 5.1). Ltms is the only statically typed language and exhibits

the property that all well-typed programs are TMS (Section 5.2). However, not all Ltms programs are

SMS. That is, there are well-typed Ltms programs that perform an out-of-bounds access. Language L
is untyped and does not provide any guarantees with regards to MS (Section 5.3). Lms is exactly the

same language as L, but this paper still distinguishes the two for sake of readability (Section 5.4).

All three languages — so Ltms, L, and Lms — assume CCT to hold.

Writing code attaining CCT should not be of the programmer’s concerns [Cauligi et al. 2019].

Such consideration is also backed up by architecture providing a data (operand) independent timing

mode, such as processors by Arm [Arm 2020, p. 543] and Intel [Intel 2023, p. 80]. In spirit of this,

language Lscct allows violating CCT by emitting events on, e.g., branching and division, that contain

secrets (Section 5.5), but provides a way to read and write to a model–specific register that enables a
“CCT-mode”.

5.1 Shared Language Definitions

(Expressions) 𝑒 ::= 𝑥 | 𝑣 | 𝑒1⊕𝑒2 | 𝑥 [𝑒] | 𝑙𝑒𝑡 𝑥=𝑛𝑒𝑤 𝑒1 [𝑒2] 𝑖𝑛 𝑒3 | 𝑑𝑒𝑙𝑒𝑡𝑒 𝑥 | 𝑥 [𝑒1] ←𝑒2
| ⟨𝑒1;𝑒2⟩ | 𝑒.0 | 𝑒.1 | 𝑙𝑒𝑡 𝑥=𝑒1 𝑖𝑛 𝑒2 | 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒 | 𝑐𝑎𝑙𝑙 𝑔 𝑒 | 𝑖 𝑓 𝑧 𝑒 𝑡ℎ𝑒𝑛 𝑒1 𝑒𝑙𝑠𝑒 𝑒2 | 𝑎𝑏𝑜𝑟𝑡 ()

(Types) 𝜏 ::= N𝑡 | 𝜏1 × 𝜏2 (Functions) 𝐹 ::= 𝑓 𝑛 foo 𝑥 := 𝑒 (Libraries) Ξ ::= [·] | 𝐹,Ξ
(Component Names) 𝜉 ::= [·] | foo, 𝜉 (Programs) ⟨ Ξctx;Ξcomp⟩

Above is the shared syntax of all the programming languages of this paper. Variables are referred

to as 𝑥,𝑦, 𝑧, 𝑎, 𝑏, 𝑐, . . . while functions may be referred to as multi-character words, such as foo,
as well as short-forms like 𝑓 , 𝑔, ℎ. All languages share the type N𝑡 representing natural numbers.

Functions are constrained to take one argument and can only call other functions listed in libraries,

which are just lists of functions. A program ⟨ Ξctx;Ξcomp⟩ is indexed by two libraries that represent

all context- and component-level functions, respectively. Lists of component-level names are

referred to as 𝜉 .

(Control Tags) 𝑡 ::= ctx | comp (Communication Tags) 𝑐 ::= ? | ! | ∅ (Poison Tags) 𝜌 ::= h | □

(Continuation Stacks) 𝐾 ::= [·] | (𝐾 ;𝑔), 𝐾 (Control Flow States) Ψ ::= (Ξ;𝐾)
(Locations) 𝑙 ∈ N (Substitutions) 𝛾 ::= [·] | [𝑣 for 𝑥] , 𝛾
(Stores) Δ ::= [·] | 𝑥 ↦→ (𝑙 ; 𝑡 ; 𝜌 ;𝑛),Δ (Heaps) 𝐻 ::= [·] |𝑣, 𝐻

(Memory States) Φ ::= (𝐻 ctx
;𝐻 comp

;Δ) (States) Ω ::= (Ψ; 𝑡 ;Φ) (Runtime Terms) 𝑟 ::= Ω ⊲ 𝑒

13



638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

POPL ’24, January 17-19, 2024, London, UK Kruse, Backes, and Patrignani

States Ω are tuples
4
containing a control flow state Ψ, control tags 𝑡 , and a memory state Φ. A

control flow state Ψ entails a library, which provides definitions for functions calls, as well as a

stack of continuations 𝐾 . Elements of the stack 𝐾 are pairs of evaluation contexts and the name

of a function associated to that evaluation context. Memory states Φ are tuples of two separate

heaps 𝐻 and a store Δ, which contains pointer metadata, such as the concrete memory location

𝑙 , a control tag 𝑡 indicating which heap the pointer points into, a poison tag 𝜌 , as well as bounds

information 𝑛. The bounds information is a mere proof artefact that has no semantic significance.

The two separate heaps essentially model a sandbox, to prevent contexts from performing pointer

arithmetic and reading from or writing to the data owned by a component. While this prevents

the effects of out-of-bounds accesses across the context and component boundary, the goal of the

design of the languages of this paper is to be able to express security violations. To this end, the

poison tag 𝜌 indicates whether a pointer has been freedh or is still allocated □, so that pointers

can be used even after their deallocation without the semantics getting stuck. Runtime terms are

simply expressions 𝑒 paired with the operational state Ω.

(Pre-Events) 𝑎𝑏 ::= Alloc 𝑙 𝑣 | Dealloc 𝑙 | Get 𝑙 𝑣 | Set 𝑙 𝑣 𝑣 ′ | · · ·
(Events) 𝑎 ::= 𝜀 |  | (𝑎𝑏 ; 𝑡 ;𝜎)

All languages use the same trace model, where events are either the empty event 𝜀, the program

crash event  , or a tuple consisting of a control tag 𝑡 and a security tag 𝜎 . The former indicates

whether the component compor the context ctxis to blame for emitting this event, the latter

indicates the secrecy level of values of the emitted event, i.e., either � or �. As for pre-events, the

memory-related ones are allocation (Alloc 𝑙 𝑣), deallocation (Dealloc 𝑙 ), reading from (Get 𝑙 𝑣) and

writing to memory (Set 𝑙 𝑣 𝑣 ′). The following is an excerpt of the operational semantics handling

some of the memory operations.

𝑟
𝑎−→𝑝 𝑟

′
„𝑟 does one primitive step to 𝑟 ′ emitting event 𝑎.”

(𝑒 − get− ∈)
𝑡 = Ω.𝑡 Ω.Δ(𝑥) = (𝑙 ; 𝑡 ; 𝜌 ;𝑚)

𝑙 + 𝑛 ∈ domΩ.𝐻 𝑡 (𝑙 + 𝑛)

Ω ⊲ 𝑥 [𝑛]
(Get 𝑙 𝑛;𝑡 )
−−−−−−−−→𝑝 Ω ⊲ 𝐻 𝑡 (𝑙 + 𝑛)

(𝑒 − set− ∉)

𝑡 = Ω.𝑡 Ω.Δ(𝑥) = (𝑙 ; 𝑡 ; 𝜌 ;𝑚)
𝑙 + 𝑛 ∉ domΩ.𝐻 𝑡

Ω ⊲ 𝑥 [𝑛] ←𝑣
(Set 𝑙 𝑛 𝑣;𝑡 )
−−−−−−−−−→𝑝 Ω ⊲ 𝑣

(𝑒 − new)

Ω ⊢ 𝑧 fresh Ω ⊢ 𝑙 fresh 𝐻 𝑡
1
= Ω.𝐻 𝑡 ≪ 𝑛 Δ1 = 𝑧 ↦→ (𝑙 ;Ω.𝑡 ;□;𝑛),Ω.Δ

Ω ⊲ 𝑛𝑒𝑤 𝑥 [𝑛]𝑒
(Alloc 𝑙 𝑛;𝑡 )
−−−−−−−−−→𝑝 Ω

[
𝐻 𝑡

for 𝐻 𝑡
1

]
[Δ for Δ1] ⊲ 𝑒 [𝑧 for 𝑥]

(𝑒 − dealloc)

Ω.Δ(𝑥) = (𝑙 ;Ω.𝑡 ; 𝜌 ;𝑛) Δ1 = Ω.Δ(𝑥 ↦→ (𝑙 ;Ω.𝑡 ;h;𝑛))

Ω ⊲ 𝑑𝑒𝑙𝑒𝑡𝑒 𝑥
(Dealloc 𝑙 ;𝑡 )
−−−−−−−−−→𝑝 Ω [Δ for Δ1] ⊲ 0

(𝑒 − abort)

Ω ⊲ 𝑎𝑏𝑜𝑟𝑡 ()  −→𝑝  

To demonstrate the use of the poison tag 𝜌 as metadata for pointers instead of removing them

from the store Δ, consider Rules 𝑒 − get− ∈, 𝑒 − set− ∉ and 𝑒 − dealloc . In Rule 𝑒 − dealloc, the
premise does not care at all about the actual state of the poison tag 𝜌 and just overwrites it, marking

the location as freed h. Besides that, the poison tag does not have any semantic meaning. For

language Ltms, this tag is really just some semantic metadata that programmers have no access to.

But, for the other languages, e.g., L, the poison tag is used to check pointer validity. Rule 𝑒 − new
allocates enough space on the respective heap, either 𝐻 ctx

or 𝐻 comp
depending on the execution

4
Throughout the paper, the substitution notation is also used to update entries in states Ω.
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context, i.e., the value of Ω.𝑡 , and adds the appropriate metadata associated to the pointer in Δ.
Reading from Rule 𝑒 − get− ∈ and writing to memory Rule 𝑒 − set− ∉ have two cases: Either the

heap is large enough or not and, depending on that, either the actual value stored at that location

is read from or written to, or some garbage data is returned. However, note that the execution

does not get stuck in such cases, it performs a step, and emits an appropriate event. Also note that

whether a pointer is poisoned or not is not reflected on the trace.

(Pre-Events) 𝑎𝑏 ::= · · · | Call 𝑐 𝑔 𝑣 | Ret 𝑐 𝑣 | Start | End 𝑣

A key difference in comparison with the specification trace model (Section 3.1) is that, as standard

in secure compilation work [Abate et al. 2019; El-Korashy et al. 2021; Patrignani and Garg 2021],

the traces have a call and return event that signals context switches, which are referred to as

interaction events. The reason for these interaction events is technical: They are a proof artifact

for reconstructing a source context from a potentially malicious target context, where during that

translation, the insertion of some wrapper code right before context switching may be necessary

to make the proof succeed. Hereby, a Call ? foo v and Return ? v signal that program execution

transitions from context- to component-level. Contrary, Call ! foo v and Return ? v signal that

program execution transitions from component- to context-level. For calls without this context

switch, the environmental semantics attaches the ∅ tag. In the following, ¬ctx = comp and

¬comp = ctx.

𝑟
𝑎−→ectx 𝑟 „Contextual step from runtime-term 𝑟 to 𝑟 ′ emitting event 𝑎.”

(𝑒 − ret)

Ω.𝐾 = (𝐾 ; foo), 𝐾 ′ 𝜉 ⊢ foo : Ω.𝑡 ⊣ 𝑐

Ω ⊲ 𝐾 ′ [𝑟𝑒𝑡𝑢𝑟𝑛 𝑣]
(Ret 𝑐 𝑣;Ω.𝑡 )
−−−−−−−−−−→ectx Ω [¬Ω.𝑡 for 𝑡]

[
𝐾 ′ for 𝐾

]
⊲ 𝐾 [𝑣]

(𝑒 − call − notsame)

𝑓 𝑛 foo 𝑥 := 𝑒 ∈ Ω.Ξ 𝜉 ⊢ foo : Ω.𝑡 ⊣ 𝑐

Ω ⊲ 𝐾 [𝑐𝑎𝑙𝑙 foo 𝑣]
(Call 𝑐 foo 𝑣;Ω.𝑡 )
−−−−−−−−−−−−−→ectx Ω [¬Ω.𝑡 for 𝑡]

[
(𝐾 ; foo),Ω.𝐾 for 𝐾

]
⊲ 𝑒 [𝑣 for 𝑥]

The environmental semantics is mostly straightforward. In Rules 𝑒 − ret and 𝑒 − call − notsame,

the judgement Ω.𝜉 ⊢ foo : Ω.𝑡 checks whether foo is a component-level name by looking it up

in the list of component-level names 𝜉 and emits the appropriate transfer tag, i.e., either ! or ?.

Additional rules that are left out ensure that, e.g., when calling the main function, the event Start is

emitted, which is a design choice this paper does for convenience when reasoning about call-chains.

Note that the End 𝑣 event is not emitted if the program crashes.

The top-level execution ⟨ Ξctx;Ξcomp⟩
𝑎
=⇒ 𝑟 constructs an initial state Ω by linking Ξctx and Ξctx

and then starts execution by calling the main function. The trace 𝑎 emitted during that execution

serves as abstraction of the behavior of the program enabling the use of Definitions 2.1 and 2.2.

5.2 Ltms: A Temporal but Not Spatial Memory Safe Language
Ltms uses the same syntax as presented earlier (Section 5) without extensions to the term level. But,

Ltms is statically typed, where the type system is inspired by 𝐿3 [Morrisett et al. 2005; Scherer et al.

2018]. The type system of Ltms exhibits the property that every well-typed Ltms program satisfies

TMS (Theorem 5.1). The proof of this theorem relies on a projection Proj
Ltms (𝛿, a) = 𝑎 from Ltms

events to specification events 𝑎, because the properties defined earlier (Section 3.1) are defined in
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the specification trace model. Hereby, the map 𝛿 (l) = 𝑙 maps an Ltms location to a location 𝑙 of the

specification trace model.

Proj
Ltms (𝛿, a) = 𝑎 „Project an Ltms event a to a specification event 𝑎.”

(Ltms-filter-context)

ab ≠  

Proj
Ltms (𝛿, (ab; ctx;𝜎) = 𝜀)

(Ltms-filter-abort)

Proj
Ltms (𝛿, ) =  

(Ltms-filter-start)

Proj
Ltms (𝛿, (Start; comp)) = 𝜀

(Ltms-filter-alloc)

𝛿 (l) = 𝑙 n = 𝑛

Proj
Ltms (𝛿, (Alloc l n; comp)) = (Alloc 𝑙 𝑛; comp;�)

Most rules of the projection Proj
Ltms (𝛿, a) are left out since, for the most part, it does the expected,

e.g., Proj
Ltms (𝛿,Dealloc l; comp;𝜎) = Dealloc 𝛿 (𝑙); comp;𝜎 . But, it also filters any action that a

context does as well as the interaction events, since these are irrelevant for component-level TMS.

Theorem 5.1 (Ltms-programs are TMS). For any Ξcomp, ⊢𝑅 Ξcomp : tms

5.3 L: A Memory-Unsafe Language

(Expressions) e ::= · · · | x is h | e has 𝜏

L extends the syntax presented earlier (Section 5.1) with dynamic typechecks e has 𝜏 and a way

to inspect poison tags x is h in the metadata of pointers. For valid pointers (□) bound to variable

x, the check x is h yields 1. If the array bound to x was allocated, i.e., has been poisoned (h), the

check x is h evaluates to 0.
(𝑒 − x has Nt)

Ω ⊲ x has Nt
𝜀−→𝑝 Ω ⊲ 1

(𝑒 − n has Nt)

Ω ⊲ n has Nt
𝜀−→𝑝 Ω ⊲ 0

Dynamic typechecks e has 𝜏 match on e and evaluate to 0 if the term is of type 𝜏 and 1 otherwise.

The projection Proj
L (𝛿, a) is equal to Proj

Ltms (𝛿, a).

5.4 Lms: Another Memory-Unsafe Language
To enhance readablity, this paper uses Lms, despite it being exactly equal to L (Section 5.3). The

projection Proj
Lms (𝛿, a) is also exactly equal to Proj

L (𝛿, a).

5.5 Lscct: A Memory-Unsafe Language with a Data Independent Timing Mode

(Expressions) e ::= n𝜎 | · · · | let x𝜎=e1 in e2 | · · · | wrdoit e | rddoit x in e

(States) Ω ::= (Ψ; t; n; Φ)
Lscct extends Lms (Section 5.4) with a way to write to a model specific register that controls a data

(operand) independent timing mode, a feature that is present in both Arm [Arm 2020, p. 543] and

Intel [Intel 2023, p. 80] processors. To this end, states are extended with the value of the register,

which is initially set to be not active. If the register is marked active, the intuition is that no secrets

can appear on specification traces. If the register is marked inactive, secrets may appear on traces.

For the other languages seen earlier, the mode is intuitively always-on, i.e., the mode of execution

always uses data independent timing. The language also adds user-annotations to values and

variables to know their secrecy 𝜎 , which is either high � or low �. Security tags 𝜎 are on the usual

secrecy lattice, where � ≤ 𝜎 and 𝜎 ≤ �.
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(Pre-Events) ab ::= · · · | Ĝet l v | Ŝet l v v′ | Branch n | Binop n

To prevent secrets from leaking but still enable reasoning about memory safety, Lscct extends
pre-events with Ĝet l v and Ŝet l v. These indicate reads from and writes to memory without

leaking secret information involved in the access. Moreover, the language extends pre-events with

Branch n and Binop n that are emitted when evaluating a branch or certain binary expressions, such

as division, respectively, whenever the data independent timing mode is inactive. The following

rules demonstrate how this is handled semantically.

(𝑒 − ⊕ − noleak)
m ≠ 0 n3 = n1 ⊕ n2
𝜎 ′′ ≤ 𝜎 𝜎 ′′ ≤ 𝜎 ′

Ψ; t; m; Φ ⊲ n𝜎1⊕n𝜎
′

2
𝜀−→𝑝 Ψ; t; m; Φ ⊲ n𝜎

′′
3

(𝑒 − wrdoit)

Ψ; t; m; Φ ⊲ wrdoit n𝜎
𝜀−→𝑝 Ψ; t; n; Φ ⊲ n𝜎

(𝑒 − ifz − true − leak)

Ψ; t; 0; Φ ⊲ ifz 0𝜎 then e1 else e2
Branch 0;t;𝜎−−−−−−−−−→𝑝 Ψ; t; 0; Φ ⊲ e2

The evaluation steps are amended to propagate the security-tag annotations 𝜎 . When the data

independent timing mode is active, pre-events Branch n and Binop n are emitted for conditionals

and binary operations, respectively.

Proj
Lscct (𝛿, a) = 𝑎 „Project an Lscct event a to a specification event 𝑎.”

(Lscct-filter-context)
ab ≠  

Proj
Lscct (𝛿, (ab; ctx;𝜎) = 𝜀)

(Lscct-filter-ĝet)
𝛿 (l) = 𝑙 n = 𝑛

Proj
Lscct

(
𝛿, (Ĝet l n; comp;𝜎)

)
= (Get 𝑙 𝑛; comp;�)

(Lscct-filter-get)
𝛿 (l) = 𝑙 n = 𝑛

Proj
Lscct (𝛿, (Get l n; comp;𝜎)) = (Get 𝑙 𝑛; comp;𝜎)

The projection to the specification trace model is mostly straightforward and similar to the others,

e.g., Section 6.1. However, for events containing the pre-events Ĝet and Ŝet, the projection always

translates the security-tag 𝜎 to �, regardless of its actual value, as seen in Rule Lscct-filter-ĝet. The
pre-events themselves still translate to just Get and Set, respectively. With this technical setup, the

information whether a read or write happened on a secret value is not hidden by the semantics,

e.g., by emitting 𝜀, but when projecting to specification events. This allows flexibility: The trace

can be checked to satisfy different properties, such as, in this case, TMS, SMS, sCCT, and their

combined versions. Example 5.2 illustrates the differences of Lscct compared to the other languages.

Example 5.2 (Lscct with and without data independent timing). Consider again the context pre-

sented in Example 3.8, where everything is marked with a security tag of high �. The following

table shows parts of the execution trace, read from top to bottom, in the left column (Active) with
and in the right column (Inactive) without data independent timing. The left side of the table (Lscct),
i.e., the two columns on the left, describes the execution trace of the program, while the right

side of the table (𝑆𝑝𝑒𝑐), i.e., the two columns on the right, describes the respective projections

Proj
Lscct (𝛿, a) to the specification trace model.
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Lscct 𝑆𝑝𝑒𝑐

𝐴𝑐𝑡𝑖𝑣𝑒 | 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 | 𝐴𝑐𝑡𝑖𝑣𝑒 | 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒

Alloc lx 12; comp;� | Alloc lx 12; comp;� | Alloc 𝑙𝑥 12; comp;� | Alloc 𝑙𝑥 12; comp;�

Alloc ly 12; comp;� | Alloc ly 12; comp;� | Alloc 𝑙𝑦 12; comp;� | Alloc 𝑙𝑥 12; comp;�

Ĝet lx 0; comp; � | Get lx 0; comp;� | Use 𝑙𝑥 0; comp; � | Use 𝑙𝑥 0; comp;�

𝜀 | Branch 0; comp;� | 𝜀 | Branch 0; comp;�

Ĝet lx 0; comp; � | Get lx 0; comp;� | Use 𝑙𝑥 0; comp; � | Use 𝑙𝑥 0; comp;�

Ŝet ly 0 ′H′; comp; � | Set ly 0 ′H′; comp;� | Use 𝑙𝑦 0; comp; � | Use 𝑙𝑦 0; comp;�

Ĝet lx 1; comp; � | Get lx 1; comp;� | Use 𝑙𝑥 1; comp; � | Use 𝑙𝑥 1; comp;�

𝜀 | Branch 0; comp;� | 𝜀 | Branch 0; comp;�

.

.

. |
.
.
. |

.

.

. |
.
.
.

Ĝet lx 12; comp; � | Get lx 12; comp;� | Use 𝑙𝑥 12; comp; � | Use 𝑙𝑥 12; comp;�

𝜀 | Branch 1; comp;� | 𝜀 | Branch 1; comp;�

Dealloc ly; comp;� | Dealloc ly; comp;� | Dealloc 𝑙𝑦 ; comp;� | Dealloc 𝑙𝑦 ; comp;�

Ĝet ly 6; comp; � | Get ly 6; comp;� | Use 𝑙𝑦 6; comp; � | Use 𝑙𝑦 6; comp;�

When the data independent timing mode is off, the execution yields events in similar fashion to

before (Sections 5.2 to 5.4). But, if it is turned on, then the branching event does not fire anymore

and both reading and writing to memory gets ultimately translated to a specification trace with

no exposed secrets .

6 CASE STUDY: COMPOSING SECURE COMPILER PASSES AND OPTIMISATIONS
This section defines several secure compilers, each of which robustly preserves a different property

of interest as depicted in Figure 3. The section demonstrates the power of the framework (Sections 3

Ltms L Lms

Lms

Lms

Lms
LscctTMS

Theorem 6.1

SMS

Theorem 6.3
D
C
E

T
h
e
o
rem

6
.5

C
F

T
h
e
o
re
m
6
.6

C
F

T
h
eo
re
m
6.
6

D
C
E

T
h
eo
rem

6.5

sCCT

Theorem 6.8

Section 6.1 Section 6.2 Section 6.3 Section 6.4

MS

Theorem 6.4

MS

Theorem 6.7

MS+sC
CT

Theo
rem

6.9

Fig. 3. Visualisation of the optimising compilation pipeline that attains a combination of MS and CCT. Vertices
in the graph are the programming languages from earlier sections (Section 5). All edges are secure compilers,
but dotted edges use the presented framework (Section 4) and strikethrough edges classic proof techniques.
The dashed lines partition the graph into the sections where the respective theorems are presented.

and 4) by composing these compilers for a secure and optimising compilation chain that robustly

preserves MS+sCCT. The first step in this chain is the compiler from Ltms to L that robustly

preserves just TMS (Theorem 6.1). From here, an instrumentation from L to Lms ensures that no

out-of-bounds accesses can happen and, thus, programs at this point attain SMS (Theorem 6.3).

Since these properties compose into MS, composing these passes yields a compiler that robustly
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preserves MS (Theorem 6.4). At this stage, the section presents two optimising translations, namely

CF and DCE, each of which robustly preserves MS (Theorems 6.5 and 6.6). These translations can be

freely ordered in the compilation chain without compromising memory safety (Theorem 6.7). The

last step of the chain ensures that code stays sCCT (Theorem 6.8) when lowered from Lms to Lscct.
The final result is that the whole compilation chain robustly preserves MS+sCCT (Theorem 6.9).

6.1 Robust Temporal Memory Safety Preservation
This subsection defines a secure compiler from Ltms to L. To this end, the compiler needs to ensure

that when execution switches from context to component, the type signatures are respected. It can

do so by inserting dynamic typechecks prior to entering the body of a function belonging to the

component.

𝛾
Ltms

L (x) = x

𝛾
Ltms

L (n) = n

𝛾
Ltms

L (e1⊕e2) =
[
𝛾
Ltms

L (e1)
]
⊕
[
𝛾
Ltms

L (e2)
]

𝛾
Ltms

L (x[e]) = x[
[
𝛾
Ltms

L (e)
]
]

𝛾
Ltms

L (delete x) = delete
[
𝛾
Ltms

L (x)
]

𝛾
Ltms

L (fn g x : Nt → 𝜏e := e) = fn g x := ifz x has Nt then
[
𝛾
Ltms

L (e)
]

else abort()

Since L has no static typechecks, it could happen that a bogus context Ξctx invokes a callable

object accepting a Nt with ⟨17;29⟩. By inserting the check, the compiler ensures that execution

does not proceed in such cases. The compiler does not insert other checks and proceeds as the

identity function (which in this paper amounts to a simple re-colouring of Ltms to L expressions).

Compiling the strncpy function from Section 1 with 𝛾
Ltms

L , the compiler would in this case ensure

that the arguments that are evaluated in the compiled strncpy are valid.

Theorem 6.1 (Compiler 𝛾
Ltms

L is secure with respect to TMS). ⊢ 𝛾Ltms

L : tms

6.1.1 Proving Robust Safety Property Preservation. We illustrate the proof of Theorem 6.1 since the

other secure compilation proofs of this paper follow the same approach. Unfolding the theorem

statement yields the following assumptions: for any 𝜋 ∈ ⌈tms⌉5, a, r, and component Ξcomp, we

have that ⊢𝑅 Ξcomp : 𝜋 and ⟨ Ξctx;𝛾
Ltms

L (Ξcomp)⟩
a
=⇒ r, where Ξctx is arbitrary. The proof obligation

is Proj
L (𝛿, a) ∈ 𝜋 , i.e., the specification trace associated to a satisfies the property 𝜋 . A way to

show this is to relate trace a to some Ltms trace a (which already satisfies the property as per

the assumptions). The assumptions already contain a target execution associated to this trace,

so the task is to find an associated Ltms execution that yields a. The trace a is split into different

parts, as commonly done in secure compilation works [Abate et al. 2018; El-Korashy et al. 2021],

where each part contains the events that either the context or the component does, but not both.

Because of this, all such trace segments are „well-bracketed” in the sense that they start with either

Start, Call ! foo v, or Ret ! v and end with either End v, Ret ? v, or Call ? foo v. In the following,

the former is referred to as a context segment, since these executions happen in Ξctx, and the latter

is referred to as a component segment, since these executions happen in 𝛾
Ltms

L (Ξcomp). Figure 4
visualises this division for a program execution with one call from context to component and how

5 ⌈ ·⌉ lifts the property to a hyperproperty by applying the powerset operation [Clarkson and Schneider 2008].
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the target execution is related to a source execution. In the figure, the green dashed lines encompass

the component segments while the orange boxes contain the actual context switches from context to

component or vice versa. From a technical perspective, as typically done in compilation proofs, the

proof requires some setup to maintain a relation between Ω and Ω . Two cross-language relations

make this precise: (i)⊸𝛿 relates states that are involved in a context segment, allowing the target

execution to perform internal calls, and (ii) ≈𝛿 relates states that are involved in a component

segment, where both states need to agree exactly, i.e., the memory and the control flow states are

required to contain the same information. The relations are indexed with 𝛿 , which is an injective

mapping from Ltms locations l to L locations l. Note that the relations ⊸𝛿 and ≈𝛿 swap when

context switching.

∅ ⊲ call main 0 Ω1 ⊲ e1 Ωw1 ⊲ ew1 Ωp ⊲ ep Ωw2 ⊲ ew2 Ω2 ⊲ e2

∅ ⊲ call main 0 Ω1 ⊲ e1 Ωw1 ⊲ ew1 Ωp ⊲ ep Ωw2 ⊲ ew2 Ω2 ⊲ e2

⊸
∅

⊸
𝛿
1

≈
𝛿
𝑝

⊸
𝛿
2

≈
𝛿
𝑤
1

⊸
𝛿
𝑤
2

≈
𝛿𝑤
1⊸

𝛿
1 ≈

𝛿
𝑝

⊸
𝛿 𝑤
2

𝑎1−→∗
ctx

𝑎𝑐−−→ctx

𝑎𝑝−−→∗
ctx

𝑎𝑟−−→ctx

𝑎2−→∗
ctx

−→∗
ctx

−−→∗
ctx

−−→∗
ctx

−−→∗
ctx

−→∗
ctx

Backtranslation Wrapper

Compiler Correctness

Fig. 4. Proof diagram for Theorem 6.1 depicting the general structure of robust preservation proofs. Nodes in
the graph represent runtime states. Vertical lines indicate cross language relations, while horizontal ones
are execution steps. The green dashed trapezoid encompasses the component segment, while the orange
dotted rectangles entail the context switches. L traces are omitted for readability. Ltms trace segments ac and
ar describe the events that happen at the boundaries, i.e., during a context switch. ap is the behavior of the
component and the traces a1 and a2 describe the context.

So far, the paper explained how to relate an Ltms execution with a L execution. The next question

is therefore how to build the corresponding Ltms execution. This is done using a standard secure

compilation proof technique called trace-based backtranslation [Abate et al. 2019; El-Korashy et al.

2021; Patrignani and Garg 2021], which can be used to build a context Ξctx that behaves similar to

Ξctx. For context segments of the trace a it is also necessary to show that the execution behaves

similarily, i.e., the context obtained from the backtranslation generates trace a. For component

segments of the trace, the relatedness of states and traces follows from a compiler correctness

argument. These two arguments yield the source execution ⟨ Ξctx;Ξcomp⟩
a
=⇒ r.

The proof now works as follows. Given that Proj
L (𝛿, a) = Proj

Ltms (𝛿, a), the proof goal changes
from Proj

L (𝛿, a) ∈ 𝜋 to Proj
Ltms (𝛿, a) ∈ 𝜋 . This follows by specializing the robust satisfaction

assumption ⊢𝑅 Ξcomp : 𝜋 to use the context Ξctx, which is obtained from the backtranslation, and

to use the source execution ⟨ Ξctx;Ξcomp⟩
a
=⇒ r.
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6.2 Robust (Spatial) Memory Safety Preservation

𝛾L
Lms

(new x [e1]e2) = let xSIZE=𝛾L
Lms

(e1) in new x [xSIZE]𝛾L
Lms

(e2)
𝛾L
Lms

(x[e]) = let xn=𝛾L
Lms

(e) in ifz 0 ≤ xn < xSIZE then x [xn] else abort ()
𝛾L
Lms

(x[e1] ←e2) = let xn=𝛾L
Lms

(e1) in ifz 0 ≤ xn < xSIZE then x [xn] ←𝛾L
Lms

(e2) else abort ()

The compiler 𝛾L
Lms

only inserts bounds-checks whenever reading from or writing to memory in

order to enforce SMS. For passing pointers, it has to pass them with their size information as well.

To this end, the compiler introduces another, fresh identifier xSIZE for each allocation that binds x
to keep track of the allocation size.

Example 6.2 (Instrumented strncpy). Consider again strncpy, but instrumented for SMS:

void strncpy(size_t n, size_t dst_size , char *dst ,

size_t src_size , char *src) {

for(size_t i = 0; i < src_size && src[i] != '\0' && i < n; ++i) {

if(i < src_size && i < dst_size) {

dst[i] = src[i];

}

}

}

When calling this in similar fashion to Example 3.10, the event Use 𝑙𝑥 2; comp;� would not be

emitted during execution, since the bounds check prevents the condition src[i] != ’\0’ from
executing.

Theorem 6.3 (Compiler 𝛾L
Lms

is secure with respect to SMS). ⊢ 𝛾L
Lms

: sms

Theorem 6.4 states that the composition of 𝛾
Ltms

L and 𝛾L
Lms

is secure with respect to MS and follows

from Theorems 6.1 and 6.3 using Theorem 4.2.

Theorem 6.4 (Compiler 𝛾
Ltms

L ◦ 𝛾L
Lms

is secure with respect to MS). ⊢ 𝛾Ltms

L ◦ 𝛾L
Lms

: ms

Proof. From Theorem 6.1 (Compiler 𝛾
Ltms

L is secure with respect to TMS) it follows that for any

Ltms program p, it compiles to an L program p that robustly satisfies TMS. Note that p robustly

satisfies TMS by the properties of the typesystem of Ltms. Then, Theorem 6.3 (Compiler 𝛾L
Lms

is

secure with respect to SMS) demonstrates that, assuming p robustly satisfies SMS, the program

p compiles to an Lms program p that also robustly satisfies SMS. From Theorem 6.4 (Compiler

𝛾
Ltms

L ◦ 𝛾L
Lms

is secure with respect to MS) it follows that p compiles to p that robustly satisfies MS,

since MS is the intersection of TMS and SMS. □
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6.3 Optimising Compilers

𝛾𝐷𝐶𝐸
Lms

Lms

(ifz true then e1 else e2) = 𝛾𝐷𝐶𝐸Lms

Lms

(e1)

𝛾𝐷𝐶𝐸
Lms

Lms

(ifz false then e1 else e2) = 𝛾𝐷𝐶𝐸Lms

Lms

(e2)

𝛾𝐷𝐶𝐸
Lms

Lms

(e1⊕e2) = 𝛾𝐷𝐶𝐸Lms

Lms

(e1)⊕𝛾𝐷𝐶𝐸Lms

Lms

(e2)

𝛾𝐶𝐹
Lms

Lms

(e) = mix(e, [·])

mix(x, 𝛾) = n if [n for x] ∈ 𝛾
mix(x, 𝛾) = x if [n for x] ∉ 𝛾

mix(n⊕m, 𝛾) = k if n⊕m = 𝑘

mix(let x=n in e, 𝛾) = mix(e, [x for n], 𝛾)
mix(x [e], 𝛾) = x [mix(e, 𝛾)]

mix(let x=e1 in e2, 𝛾) = let x= mix(e1, 𝛾) in mix(e2, 𝛾)
mix(ifz e1 then e2 else e3, 𝛾) = ifz mix(e1, 𝛾) then mix(e2, 𝛾) else mix(e3, 𝛾)

The two optimising compiler passes from Lms to Lms perform DCE and CF, respectively. The

DCE pass applies a naive rewrite rule on conditionals. For CF, the pass uses an auxiliary function

mix that does the actual work. It rewrites constant binary operations, e.g., 17 − 1 to 16, and replaces
variables that are assigned to constants with their constant, e.g., let x=7 in x to 7 . Both passes are

secure with respect to MS. The proof for either is relatively simple, because both DCE and CF do

not change the way memory accesses happen. Moreover, since the input and output languages to

these compilers are the same, attacker contexts do not have more power in the target language

than in the source.

Theorem 6.5 (Compiler 𝛾𝐷𝐶𝐸
Lms

Lms

is secure with respect to MS). ⊢ 𝛾𝐷𝐶𝐸Lms

Lms

: ms

Theorem 6.6 (Compiler 𝛾𝐶𝐹
Lms

Lms

is secure with respect to MS). ⊢ 𝛾𝐶𝐹 Lms

Lms

: ms

With both Theorems 6.5 and 6.6 it follows from Corollary 4.3 that the two passes can be inter-

changed arbitrarily:

Theorem 6.7 (Compilers 𝛾𝐶𝐹
Lms

Lms

◦ 𝛾𝐷𝐶𝐸Lms

Lms

and 𝛾𝐶𝐹
Lms

Lms

◦ 𝛾𝐷𝐶𝐸Lms

Lms

are secure with respect to

MS). ⊢ 𝛾𝐶𝐹 Lms

Lms

◦ 𝛾𝐷𝐶𝐸Lms

Lms

: ms and ⊢ 𝛾𝐷𝐶𝐸Lms

Lms

◦ 𝛾𝐶𝐹 Lms

Lms

: ms.

6.4 Robust Strict Cryptographic Constant Time Preservation

𝛾
Lms

Lscct (fn g x := e) = fn g x := wrdoit 1;𝛾Lms

Lscct (e)

𝛾
Lms

Lscct (call g e) = call g 𝛾Lms

Lscct (e); wrdoit1

𝛾
Lms

Lscct (e1⊕e2) = 𝛾
Lms

Lsccte1⊕𝛾
Lms

Lsccte2

Given the fact that Lscct provides a CCT-mode that can be turned on or off, the compiler inserts

wrapper code for function bodies to ensure that execution in the component always happen in this

CCT-mode. The context can overwrite the flag and exit the mode, but upon invoking a function
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that is part of the component, the flag would be set again. Because of this, the compiler is secure

with respect to sCCT, similarly proven as in Section 6.1.

Theorem 6.8 (Compiler 𝛾
Lms

Lscct is secure with respect to sCCT). ⊢ 𝛾Lms

Lscct : scct

6.5 Robust Preservation of Intersection of Memory Safety and Strict Cryptographic
Constant Time

Let 𝛾
Ltms

Lscct be the compiler that is the composition of 𝛾
Ltms

L , 𝛾L
Lms

, 𝛾𝐶𝐹
Lms

Lms

, 𝛾𝐷𝐶𝐸
Lms

Lms

, and 𝛾
Lms

Lscct , then the

following theorem holds.

Theorem 6.9 (Compiler 𝛾
Ltms

Lscct is secure with respect to sCCT). ⊢ 𝛾Ltms

Lscct : ms∩ scct

Proof. From Theorem 6.4 (Compiler 𝛾
Ltms

L ◦ 𝛾L
Lms

is secure with respect to MS), we have that

any Ltms program p compiles into a Lms program p that robustly satisfies MS. Then, from Theo-

rem 6.7 (Compilers 𝛾𝐶𝐹
Lms

Lms

◦ 𝛾𝐷𝐶𝐸Lms

Lms

and 𝛾𝐶𝐹
Lms

Lms

◦ 𝛾𝐷𝐶𝐸Lms

Lms

are secure with respect to MS) we have

that p gets optimised to a program p′ that is also MS, where the order of optimisations does not

matter for p′ to be MS. Assuming p′ robustly satisfies sCCT, by Theorem 6.8 (Compiler 𝛾
Lms

Lscct is

secure with respect to sCCT) it compiles to an Lscct program p that robustly satisfies sCCT as well.

Finally, from Theorem 4.2 (Sequential Composition of Secure Compilers) it follows that, given p
robustly satisfies sCCT and MS, p also robustly satisfies sCCT and MS. □

7 RELATEDWORK
This section discusses work on robust compilation (Section 7.1) and on other secure compilation

criteria (Section 7.2). Since the case study of Sections 5 and 6 implements measures for preserving

MS and CCT, this section then presents relevant related work as well (Sections 7.3 and 7.4).

7.1 Secure Compilation as Robust Preservation
The robust preservation of properties as a compiler-level criterion has been analyzed exten-

sively [Abate et al. 2021a, 2019; Patrignani et al. 2019; Patrignani and Garg 2021] and thus we build

on that framework. No existing work is concerned with composing robustly safe compilers. These

works consider languages with different trace models and our technical setup can be adapted to

that as long as security properties and their monitors are still defined on the same trace model. The

work relating robust preservation with universal composability [Patrignani et al. 2022] is closest

to what this paper presents. The authors demonstrate a similar compositionalty theorem to what

is presented here (Section 4) but use it in the context of protocols. They do not demonstrate the

scalability of the approach. Moreover, they are missing the upper and lower compositions.

7.2 Other Secure Compilation Criteria
While this paper focuses on the robust preservation framework [Abate et al. 2019], other secure

compilation criteria exist. The survey on formal approaches to secure compilation [Patrignani

et al. 2019] discusses a broad spectrum already, while this section presents a very high-level

overview. Fully abstract compilation [Abadi 1999b] states that a compiler should preserve and

reflect observational equivalence between source and target programs. It was shown [Abate et al.

2021b] that fully abstract compilers robustly preserve program properties that are either trivial or

meaningless. As a mitigation for this, the authors presented a categorical approach based on maps

of distributive laws [Watanabe 2002], which they call many maps of distributive laws. Maps of

distributive laws have been investigated before as a possible secure compilation criterion [Tsampas

et al. 2020]. Other approaches are extensions of the compiler correctness criterion as discussed

in other work [Patterson and Ahmed 2019] or the introduction of opaque observations [Vu et al.
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2021] to reconcile compiler optimisations with security. Note that this work also presents secure

compilers that are optimising, but contrary to the other [Vu et al. 2021], provides a formal account

of these in the robust preservation framework.

7.3 Memory Safety Mechanisms
Different mechanisms for enforcing memory safety exist that also consider the secure compilation

domain, i.e., have an active attacker model. For example, the „pointers as capabilities” principle

represents pointers as machine-level capabilities [El-Korashy et al. 2021], which behave in a similar

fashion to capabilities by means of linear typing [Morrisett et al. 2005]. The approach of this paper

also uses linear typing, but differs from 𝐿3 [Morrisett et al. 2005] in the way that functions are not

first-class. Moreover, this paper considers an active attacker, while the work on 𝐿3 only discusses

whole programs and, thus, has no active attacker model. The instrumentation to ensure memory

safety that this paper presents is inspired by Softbounds [Nagarakatte et al. 2009]. That work inserts

bounds-checks in front of pointer-dereferences and, for this to work, inserts meta-data information

on pointer creation. Softbounds also works in a more advanced setting with structured fields

accesses and also introduces a table-lookup for pointers that are stored in memory. This paper only

considers arrays of primitive data, i.e., there are no pointers to pointers or structures. Several other

approaches to memory-safety exist in literature, specifically as compiler instrumentations [Akritidis

et al. 2009; Dhumbumroong and Piromsopa 2020; Jung et al. 2021; Nam et al. 2019; Shankaranarayana

et al. 2023; Younan et al. 2010; Zhou et al. 2023], hardware-extensions [Chen et al. 2023; Kim et al.

2023; Kwon et al. 2013; Saileshwar et al. 2022], or programming language extensions [Benoit and

Jacobs 2019; Elliott et al. 2018, 2015; Jim et al. 2002; Li et al. 2022; Weis et al. 2019; West and Wong

2005]. What differentiates this work from them is that this work uses known, compiler-based

approaches to ensure memory-safety as a means to investigate secure compiler compositions. This

paper does not provide efficient memory-safety, but serves as a theoretical foundation for the secure

compilation domain.

To extend the languages in this paper with a less restricted form of pointer arithmetic, the region

coloring memory safety monitor presented in earlier work [Michael et al. 2023] can be used. The

work presenting this monitor provides an approach for the robust preservation of memory safety

compiling from C to WASM. However, they do not discuss composition of secure compilers but

rather investigate an instance of a secure compiler.

7.4 Cryptographic Constant Time Mechanisms
The approach to preserving cryptographic constant time in this paper is high-level, where a

programming language exposes a way to switch the semantics to a data (operand) independent

timing mode. Since identifiers in Lscct are annotated with a secrecy tag, this approach is similar to

others with information flow control. For example, Vale [Bond et al. 2017] uses Dafny to ensure

constant-time assembly code, while Jasmin [Almeida et al. 2017] makes use of the Coq proof

assistant to reject non-constant-time programs. CT-Wasm [Watt et al. 2019] enforces constant-

timeness by means of a type system. Different to the approach of this paper, these approaches

necessitate that the programmer writes CCT code. An approach to allow programmers to write

more high-level code is CryptOpt [Kuepper et al. 2023], which generates efficient target-code

by means of a randomised search. This paper abstracts over concrete mitigation strategies and

simply assumes that there is a flag to switch to a cryptographic-constant time execution mode. This

can be realised by employing the FaCT [Cauligi et al. 2019] compiler, which translates common

non-constant time code patterns to be constant-time, and the data (object) independent timing

execution mode of modern processors.
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8 CONCLUSION
This paper tackled the problem of understanding what kind of security properties does a secure

compiler preserve, when said compiler is the combination of compiler passes that preserve possibly

different security properties. For this, this paper first formalised security properties of interest and

their composition. Then, it proved that composing secure compilers that preserve certain properties

results in a secure compiler that preserves the composition of these properties. Finally, this paper

defines a multi-pass compiler and proves that it preserves MS+sCCT. Crucially, this paper derives

the security of the multi-pass compiler from the composition of the security properties preserved

by its individual passes, which include security-preserving as well as optimisation passes.
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