
Secure Composition of SPECTRE Mitigations
Matthis Kruse

CISPA Helmholtz Center for Information Security
Germany

matthis.kruse@cispa.de

Michael Backes
CISPA Helmholtz Center for Information Security

Germany
director@cispa.de

1 Introduction1

Some modern programming languages enjoy strong security2
guarantees, for example the Rust programming languages3
has memory safety guarantees given by its compiler per-4
forming a semantic analysis pass. While programmers may5
expect that these guarantees hold even after translating their6
program to the target programming language, it has been7
shown that this expectation is false in the general case [4].8

Correct compilers do not necessarily provide satisfactory9
guarantees [4] and thus one has to resort to secure compil-10
ers [2, 3, 8] which preserve property satisfaction even when11
the compiled program is linked with arbitrary target-level12
code, i.e., the compiled program is robust. A recent frame-13
work [7] describes how to compose secure compilers, thus14
allowing a divide-and-conquer approach to the engineering15
of secure compilers. This framework primarily focuses on16
compilers that do not change the traces of the original pro-17
gram. However, real-world compilers perform source-code18
transformations that may change the trace, such as apply-19
ing source-code instrumentations that enhance security by,20
e.g., inserting bounds-checks. Other work [1] showed that21
there are essentially two approaches to this, where the ro-22
bust preservation [2, 3, 8] statement is changed to lift the23
restriction of a unified trace-model as follows:24

Top-down Approach Bottom-up Approach
if p robustly satisfies 𝜋, if p robustly satisfies 𝜎∼ (𝜋 ),
then 𝛾 (p) robustly satisfies 𝜏∼ (𝜋 ) then 𝛾 (p) robustly satisfies 𝜋

Hereby, 𝛾 is a compiler, ∼ a cross-language trace relation25
from S-level traces to T-level traces describing the semantic26
effect of 𝛾 , and 𝜏∼/𝜎∼ project a source/target property to a27
target/source property. While the compositionality frame-28
work [7] does consider the top-down approach, it does not en-29
tail composition of the bottom-up one. However, the bottom-30
up approach is crucial for security properties that can only31
be described in the target-level, such as absence of SPECTRE32
vulnerabilities [6], since higher-level languages do not model33
speculation in their semantics.34
It is worth noting that some compiler compositions may35

not give the wanted security properties, such as when com-36
posing with Index-Masking Defense (IMD) [10] that prevents37
SPECTREv1 attacks that exploit speculative execution of38
loads happening after a branch. While IMD prevents SPEC-39
TREv1 attacks, it can introduce SPECTREv4 vulnerabilities40
and, thus, can render a SPECTREv4 mitigation run prior to41
IMD useless.42
Compilation passes that do not violate the security prop-43

erties of earlier ones fulfill a notion of compatibility of a44
cross-language trace relation that describes the effect of the45

compiler. Because compatiblity is defined on cross-language 46
trace relations, there is no need to reason about the concrete, 47
syntactic changes a compilation pass does. 48

Definition 1.1 (Compatibility). Given languages S and T, a 49
cross-language trace relation ∼ between traces of S and T, 50
and a T−level collection of propertiesC, then ∼ is compatible 51
with C iff for any 𝜋 ∈ C it holds that 𝜎∼ (𝜋) ∈ 𝜎∼ (C). 52

This extended abstract extends prior work [7] to con- 53
sider bottom-up secure compiler composition and aims to 54
apply that theory to a selection of mitigations for SPECTRE 55
variants. It is demonstrated that it suffices to setup a cross- 56
language trace relation that describes the semantic effect of 57
a secure compiler and prove compatibility with properties 58
of interest in order to compose the secure compiler without 59
giving up on security guarantees. 60

2 Composing Secure Compilers 61

The composition of secure compilers requires two theorems 62
to be proven: (1) robust preservation, either with a unified 63
trace-model [3], top-down, or bottom-up, and (2) Defini- 64
tion 1.1 (Compatibility). The rest of the paper assumes that 65
the presented SPECTREmitigations have been proven secure 66
as in (1). The property that all mitigations aim to robustly 67
preserve is a variant of Speculative Safety (SS) [9], which 68
relies on a taint-tracking mechanism and taints (𝜎) that tag 69
events as safe (𝑆) or unsafe. Contrary to the original defi- 70
nition of SS, this paper states SS such that tags should be 71
unequal to the tag of the kind of variant (vX) that one is 72
interested in: 73

Definition 2.1 (SS for variant vX). 𝜋vX = {a | ∀a𝜎 ∈ a, 𝜎 ≠ vX} 74

The original SS [9], hereby named 𝜋𝑠𝑠 , can be recovered:

𝜋𝑠𝑠 =
⋂
vX

𝜋vX

Robust preservation (only for top-down or bottom-up) and 75
compatiblity (Definition 1.1) require a cross-language trace 76
relation that describes the effect of a corresponding compiler 77
semantically. Therefore, for the rest of the extended abstract, 78
it is assumed that there are source (S) and target (T) lan- 79
guages, which share a large portion of their trace model. The 80
trace models must have some kind of allocation (Alloc(ℓ ;𝑛)), 81
memory load/store (Get(ℓ ; 𝑖𝑑𝑥 ;𝑛) and Set(ℓ ; 𝑖𝑑𝑥 ;𝑛; 𝑣)), branch 82
(If(𝑏)), and indirect branch events (Ibranch(𝑣)), jumps (Jmp(𝑣)),83
as well as a marker event for a barrier (×), and a rollback 84
event (Rlb) [9]. Trace events are annotated with taint tags 85

https://orcid.org/0000-0003-4062-9666


PriSC’23, January 20nd, 2023, London, United Kingdom Matthis Kruse and Michael Backes

and for sake of readability, trace events tagged with the se-86
cure tag (S) are written without the tag. This is enough setup87
to sketch the cross-language trace relations describing the88
semantic changes each considered mitigation does:89

• Index-Masking Defense (IMD) [10] (v1)
a ∼𝑣1

IMD a ≡ if Alloc(ℓ ; n),Get(ℓ ; idx; v) ∈ a
then ∃ℓ n idx v,Alloc(ℓ ;n)𝜎 ∈ a
s.t. Get(ℓ ; idx; v)𝜎 ′ ∈ a
and ∃𝑚, n = 2𝑚 and idx ≤ 2𝑚
and ℓ ≈ ℓ and v ≈ v

IMD changes memory allocation to be powers-of-290
and masks all indices with the bounds of the array.91

• Insertion of lfences (LFENCE) [11] (v1, v4)
a ∼𝑣1,𝑣4

LFENCE a ≡ (if ∀𝑖, a[𝑖] = If (_)𝜎 then a[𝑖 + 1] = ×𝜎 ′ )
and (if ∀𝑖 > 0, a[𝑖] = Get(_)𝜎 ′′

then a[𝑖 − 1] = ×𝜎 ′′′ )
LFENCE simply puts a barrier after any branch or be-92
fore any load instruction. While the literature provides93
(partial) solutions that do not insert the barrier every-94
where, due to the significant performance penalty, the95
considered pass is simple and puts the barrier „every-96
where”, i.e., in front of loads and after branches. Since97
the S-level trace is completely irrelevant, this is an98
example for an enforcement.99

• Return Trampoline (Retpoline) [12] (v2)100
101

(retpol-ibranch)

v ≈ v a = Set(ℓ ; sp; v)𝜎 · Ret𝜎 ′ · Jmp
𝜎 ′′

· Rlb · a′

Ibranch(v) · a ∼𝑣2
Retpoline a

102

103
The Retpoline applies for every indirect branch on the104
source-level trace. Each indirect branch at source-level105
must have an associated retpoline at target-level, as106
sketched with the rule retpol-ibranch. That is, the ad-107
dress of the indirect call must be pushed onto the stack108
to be used in the return instruction and speculation109
busy waits until the rollback happens.110

• Set Model Specific Register Flags (MSR) [5] (v2, v4, v5)

a ∼𝑣2,𝑣4,𝑣5
MSR a ≡ ∀a𝜎 , 𝜎 ∉ {v2, v4, v5}

Modern processors have flags to turn off speculation111
features, resulting in complete absence of speculation112
(for these variants). This is another example of an en-113
forcement.114

It remains to show Definition 1.1 (Compatibility). Without115
a proof of Definition 1.1 (Compatibility), the composition116
of mitigations may not provide the security guarantees of117
interest, since one could intuitively „undo” what another one118
did. This extended abstract does not provide formal proof for119
all possible compositions of above mitigations, but sketches120
the anticipated proofs of compatibility theorems in Figure 1.121

IMD LFENCE

Retpoline MSR

𝜋v1,v4

𝜋v2,v4,v5

𝜋v1

𝜋v2

𝜋v1,v4

𝜋v2,v4,v5

𝜋𝑠𝑠

𝜋v1,v2,v4

𝜋𝑠𝑠

𝜋v1,v2

Figure 1. Compatibility of source-code instrumentations to
prevent attacks of individual or multiple SPECTRE-variants.
Nodes are mitigations that perform the respective source-
code instrumentation. Edges are directed and represent com-
patibility of the composition. The origin of an edge is the
compiler that should be run first, the target of an edge is the
compiler that should be run afterwards. Edge labels indicate
the SS variants.

References 122
[1] Carmine Abate, Roberto Blanco, Ştefan Ciobâcă, Adrien Durier, Deepak 123

Garg, Cătălin Hriţcu, Marco Patrignani, Éric Tanter, and Jérémy 124
Thibault. 2021. An extended account of trace-relating compiler cor- 125
rectness and secure compilation. ACM Transactions on Programming 126
Languages and Systems (TOPLAS) 43, 4 (2021), 1–48. 127

[2] Carmine Abate, Roberto Blanco, S, tefan Ciobâcă, AdrienDurier, Deepak 128
Garg, Cătălin Hrit,cu, Marco Patrignani, Éric Tanter, and Jérémy 129
Thibault. 2020. Trace-Relating Compiler Correctness and Secure Com- 130
pilation. In Programming Languages and Systems, Peter Müller (Ed.). 131
Springer International Publishing, Cham, 1–28. 132

[3] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco 133
Patrignani, and Jérémy Thibault. 2019. Journey Beyond Full Abstrac- 134
tion: Exploring Robust Property Preservation for Secure Compilation. 135
In 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). 136
256–25615. https://doi.org/10.1109/CSF.2019.00025 137

[4] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Se- 138
cure Compilation of Side-Channel Countermeasures: The Case of 139
Cryptographic “Constant-Time”. In CSF 2018 - 31st IEEE Computer 140
Security Foundations Symposium. Oxford, United Kingdom. https: 141
//hal.archives-ouvertes.fr/hal-01959560 142

[5] Red Hat. [n. d.]. Controlling the Performance Impact of Mi- 143
crocode and Security Patches for CVE-2017-5754 CVE-2017-5715 144
and CVE-2017-5753 using Red Hat Enterprise Linux Tunables. 145
https://access.redhat.com/articles/3311301. 146

[6] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, 147
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas 148
Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks: 149
Exploiting Speculative Execution. In 2019 IEEE Symposium on Security 150
and Privacy (SP). 1–19. https://doi.org/10.1109/SP.2019.00002 151

[7] Matthis Kruse, Michael Backes, and Marco Patrignani. 2023. 152
Secure Composition of Robust and Optimising Compilers. 153
arXiv:2307.08681 [cs.CR] 154

[8] Marco Patrignani and Deepak Garg. 2021. Robustly Safe Compilation, 155
an Efficient Form of Secure Compilation. ACM Trans. Program. Lang. 156
Syst. 43, 1 (2021), 1:1–1:41. https://doi.org/10.1145/3436809 157

[9] Marco Patrignani and Marco Guarnieri. 2021. Exorcising Spectres with 158
secure compilers. In Proceedings of the 2021 ACM SIGSAC Conference 159
on Computer and Communications Security. 445–461. 160

https://doi.org/10.1109/CSF.2019.00025
https://hal.archives-ouvertes.fr/hal-01959560
https://hal.archives-ouvertes.fr/hal-01959560
https://hal.archives-ouvertes.fr/hal-01959560
https://doi.org/10.1109/SP.2019.00002
https://arxiv.org/abs/2307.08681
https://doi.org/10.1145/3436809


Secure Composition of SPECTRE Mitigations PriSC’23, January 20nd, 2023, London, United Kingdom

[10] Filip Pizlo. 2018. What Spectre and Meltdown Mean For We-161
bKit. https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-162
for-webkit/.163

[11] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2022.164
Mitigating speculative execution attacks via context-sensitive fencing.165
IEEE Design & Test (2022).166

[12] Paul Turner. [n. d.]. Retpoline: a software con-167
struct for preventing branch-target-injection.168
https://support.google.com/faqs/answer/7625886.169


	1 Introduction
	2 Composing Secure Compilers
	References

